Teoria dei campi differenziali ordinati
Lacava, Francesco
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 59 (1975), p. 322-327 / Harvested from Biblioteca Digitale Italiana di Matematica

In this paper we study the theory of ordered differential fields (CDO); in other words, the theory obtained adding the order axioms for a field to "differential field" 's axioms. If we consider a model K of such theory and we "forget" order, we know that such model is embedded in its differential closure. In a such closure, we can consider the set of real fields. Such a set has maximal elements (with respect to inclusion). We call CDO* the theory of so obtained maximal elements, for all KMod (CDO). If we neglect derivation, models of CDO* are real closed and then ordered. So we can prove that CDO* is the model completion of CDO. We find the axioms of CDO*, too. Finally, we find a method for eliminating quantifiers (for CDO*) in the formulas containing only inequalities.

Publié le : 1975-11-01
@article{RLINA_1975_8_59_5_322_0,
     author = {Francesco Lacava},
     title = {Teoria dei campi differenziali ordinati},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {59},
     year = {1975},
     pages = {322-327},
     zbl = {0353.02032},
     mrnumber = {0480009},
     language = {it},
     url = {http://dml.mathdoc.fr/item/RLINA_1975_8_59_5_322_0}
}
Lacava, Francesco. Teoria dei campi differenziali ordinati. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 59 (1975) pp. 322-327. http://gdmltest.u-ga.fr/item/RLINA_1975_8_59_5_322_0/

[1] Bourbaki, N. (1951) - Elements de mathématique, 12, 107. Paris. | MR 580296

[2] Cohen, P. J. (1969) - Decision procedures for real and p-adic fields. Communications on «Pure and Applied Mathematics», 22. | MR 244025 | Zbl 0167.01502

[3] Kaplanski, I. (1957) - An introduction to differential algebra, Hermann, Paris. | MR 93654

[4] Mangani, P. (1972-73) - Geometria algebrica, Dispense, Firenze.

[5] Ritt, J. F. (1950) - Differential algebra, New York. | MR 35763

[6] Robinson, A. (1965) - Introduction to model theory and to the metamathematics of algebra, North-Holland, Publ. Co. | MR 153570

[7] Robinson, A. (1972) - On the real closure of a Hardy field, Theory of sets and topology, Berlin. | MR 340225

[8] Sacks, G. (1972) - Saturated model theory, Benjamin. | MR 398817

[9] Seidenberg, A. (1956) - An elimination theory for differential algebra, University of California, Publication in Mathematics. | MR 82487 | Zbl 0083.03302

[10] Seidenberg, A. - Some basic theorems in differential algebra, «Transactions of the American Mathematical Society», 73, 174-190. | MR 49174

[11] Tarski, A. (1951) - A decision method for elementary algebra and geometry, Berkeley and Los Angeles, | MR 44472 | Zbl 0044.25102