Una soluzione delle equazioni di Einstein-Maxwell ammettente un gruppo G7 di automorfismi
Pasqua, Matilde
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 59 (1975), p. 91-99 / Harvested from Biblioteca Digitale Italiana di Matematica

In this note we determine the most general pure electromagnetic field compatible with a given homogeneous hyperbolic metric which has 4 as support and admits a full group of isometries G7. The invariance group of the electromagnetic field is a proper subgroup (with 5 or 6 parameters) of the group G7.

Publié le : 1975-07-01
@article{RLINA_1975_8_59_1-2_91_0,
     author = {Matilde Pasqua},
     title = {Una soluzione delle equazioni di Einstein-Maxwell ammettente un gruppo G7 di automorfismi},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {59},
     year = {1975},
     pages = {91-99},
     zbl = {0342.53030},
     language = {it},
     url = {http://dml.mathdoc.fr/item/RLINA_1975_8_59_1-2_91_0}
}
Pasqua, Matilde. Una soluzione delle equazioni di Einstein-Maxwell ammettente un gruppo G7 di automorfismi. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 59 (1975) pp. 91-99. http://gdmltest.u-ga.fr/item/RLINA_1975_8_59_1-2_91_0/

[1] Lichnerowicz, A. (1955) - Théories relativistes de la Gravitation et de l'Electromagnétisme. Masson Editeur. | MR 58337

[2] Robertson, H. P. e Noonan, T. W. (1969) - Relativity and Cosmology. W. B. Saunders Company.

[3] Teleman, N. (1968) - Clasificarea spatiilor riemanniene V4 omogene de tip relativist, «Stud. Cerc. Mat.», 1, 67-125.