Vengono stabiliti risultati sugli autovalori degli operatori non lineari negli spazi di Banach e Hilbert detti "densifying mappings".
@article{RLINA_1975_8_59_1-2_34_0,
author = {Kanhaya Lal Singh},
title = {Eigenvalues of densifying mappings},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
volume = {59},
year = {1975},
pages = {34-39},
zbl = {0351.47042},
mrnumber = {0448178},
language = {en},
url = {http://dml.mathdoc.fr/item/RLINA_1975_8_59_1-2_34_0}
}
Singh, Kanhaya Lal. Eigenvalues of densifying mappings. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 59 (1975) pp. 34-39. http://gdmltest.u-ga.fr/item/RLINA_1975_8_59_1-2_34_0/
[1] - Topology, Vol. 1, Academic Press, New York. | MR 217751
[2] (1955) - Punti Uniti in Trasformazioni a Codominio Noncompatto, «Rend. Sem. Mat. Padova», 24, 84-92. | MR 70164 | Zbl 0064.35704
[3] (1969) - k-set Contractions, Ph. D. Dissertation, University of Chicago.
[4] (1967) - A Fixed Point Principle, «Jour. of Funct. Anal, and Appl.».
[5] (1948) - Completely Continuous Scalers and Variational Methods, «Ann. Math.», 49 (2). | MR 28532
[6] (1968) - Contraction Mappings and Fixed Point Theorems, «Ann. de la Soc. Sc. de Bruxelles», 83, 34-44. | MR 246177
[7] (1968) - A Remark on a Paper by V. V. Bryant, «Amer. Math. Monthly», 89, Oct.
[8] (1969) - On Some Fixed Point Theorems I, «Riv. di Mat. Univ. Parma», 10 (2), 13-21. | MR 293612
[9] (1969) - Some Further Extension of Banach's Contraction Principle, «Riv. di Mat. Univ. Parma», 10 (2), 139—155. | MR 296929 | Zbl 0216.19404
[10] (1970) - Nonexpansive Mappings in Banach Spaces II, «Bull. Math. Rumania», 14 (2), 237-246. | MR 326513
[11] - Fixed Point Theorems for Densifying Mappings, «Math. Student Univ. of Meerut» (India). In press. | MR 423140
[12] (1964) - Topological Methods in The Theory of Nonlinear Integral Equations, Pergamon Press, New York. | MR 159197
[13] (1974) - A Fixed Point Theorem for Positive k-set Contraction, «Proc. Edinb. Math. Soc.». | MR 380544