On duo-rings
Chandran, V. R.
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 59 (1975), p. 823-827 / Harvested from Biblioteca Digitale Italiana di Matematica

Si studiano gli anelli associativi in cui ogni ideale sinistro (o destro) è un ideale bilatero (duo-rings). In particolare si danno esempi non banali di "duo-rings" non commutativi, si caratterizzano alcune notevoli classi di "duo-rings"; si prova che è sempre possibile immergere un "duo-ring" regolare in un "duo-ring" regolare con unità.

Publié le : 1975-06-01
@article{RLINA_1975_8_58_6_823_0,
     author = {V. R. Chandran},
     title = {On duo-rings},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {59},
     year = {1975},
     pages = {823-827},
     zbl = {0335.16022},
     mrnumber = {0437594},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1975_8_58_6_823_0}
}
Chandran, V. R. On duo-rings. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 59 (1975) pp. 823-827. http://gdmltest.u-ga.fr/item/RLINA_1975_8_58_6_823_0/

[1] Chandran, V. R. (1971) - On Duo-Ring, IV. Abstract Notices of «A.M.S.», October.

[2] Feller, E. H. (1958) - Properties of Primary non-Commutative rings, «Trans. A.M.S.», 79-91. | MR 98763 | Zbl 0095.25703

[3] Fuchs, L. and HALPERIN (1964) - On the embedding of a regular ring in a regularing with I, «Fundamental Mathematical», 287-290. | MR 166211

[4] Jacobson, N. (1964) - Structure of rings, «Amer. Math. Colloqu. Publication», 37, Revised edition. | MR 222106

[5] Kaplansky, I. (1950) - Topological representation of algebras, «Trans. A.M.S.», 451-458. | MR 32612

[6] Mccoy, N. H. (1969) - Prime ideals in General Rings, «Amer. J. of Maths.», 823-830. | MR 32590

[7] Szasz, F. (1973) - Some generalisation of strongly regular rings, II, «The Math. Japonica», 18 (2), 87-90. | MR 342556 | Zbl 0282.16011

[8] Thierrin, G. (1960) - On Duo-Rings, «Canad. Math. Bulletin», 167-172. | MR 125856