The classical Sturm comparison and separation theorems have been generalized by M. Picone and by G. Cimmino to partial differential equations and to systems of ordinary and partial differential equations [1]. In [2] G. Cimmino has proved the Sturm theorems for mappings valued in . Recently several authors [3, 4, 5, 6, 7] have studied the Sturm theorems for ordinary and partial equations with solutions taking their values in or . C. Pontini [8] has proved a Sturm theorem for ordinary equations whose solutions take their values in a Banach algebra. In my work I prove Sturm comparison and separation theorems for linear homogenous selfadjoint partial differential equations of the second order whose solutions take their values in a Hilbert space. I suppose that a non-trivial solution of a differential equation taking its values in a Hilbert space vanishes on the boundary of a smooth domain and I prove that a solution of another related differential equation with solutions taking their values in has not an inverse in at least a point of . Fundamental theorems are (2) and (3) from which we obtain the identity (4) which is the basis for Sturm theorems.
@article{RLINA_1975_8_58_5_675_0, author = {Carlo Ravaglia}, title = {Teoremi di confronto e di separazione per equazioni differenziali alle derivate parziali in uno spazio di Hilbert}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {59}, year = {1975}, pages = {675-679}, zbl = {0338.35003}, mrnumber = {0430484}, language = {it}, url = {http://dml.mathdoc.fr/item/RLINA_1975_8_58_5_675_0} }
Ravaglia, Carlo. Teoremi di confronto e di separazione per equazioni differenziali alle derivate parziali in uno spazio di Hilbert. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 59 (1975) pp. 675-679. http://gdmltest.u-ga.fr/item/RLINA_1975_8_58_5_675_0/
[1] Teoremi di confronto fra equazioni o sistemi di equazioni differenziali lineari del second'ordine, «Seminario Mat. R. Univ. di Roma», (4) 1, 3-24. | Zbl 0015.11001
(1936—14) -[2] Sui sistemi di infinite equazioni differenziali lineari con infinite funzioni incognite, «Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur.» (6) 5 (8), 271—318. | Zbl 59.1105.01
(1933) -[3] Comparison theorems for elliptic differential equations, «Proc. Am. Math. Soc.», 16, 886-890. | MR 180753 | Zbl 0134.09001
e (1965) -[4] Sturm separation and comparison theorems for ordinary and partial differential equations, «Atti Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Natur.», (8) 9, 133-194. | MR 481251
e (1969) -[5] A generalized Picone identity, «Atti Accad. Naz. Lincei, Rend.», 45, 217-220. | MR 251371 | Zbl 0194.42002
(1968) -[6] A Sturm theorem for strongly elliptic systems and applications, « Bull. Am. Math. Soc.», 75, 1025-1027. | MR 249824 | Zbl 0179.43104
(1969) -[7] Sturm' theorem and oscillation of solutions of strongly elliptic systems, «Soviet Math. Doklady», 3, 24-27. | Zbl 0116.30003
(1968) -[8] Un teorema di confronto per equazioni differenziali astratte, «Boll. Un. Mat. Ital.», (4) 8, 117-126. | MR 330629 | Zbl 0282.34045
(1973) -