N ell'ipotesi che il sistema lineare sia completamente controllabile, l'Autore riprende le sue ricerche sul sistema perturbato dove soddisfa ad un'equazione integrale e dà condizioni utili per eliminare alcuna difficoltà connesse al suo problema.
@article{RLINA_1975_8_58_2_200_0, author = {Jerald P. Dauer}, title = {Examples Using Integral Equations to Determine Controllability}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {59}, year = {1975}, pages = {200-204}, zbl = {0354.93013}, mrnumber = {0415469}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1975_8_58_2_200_0} }
Dauer, Jerald P. Examples Using Integral Equations to Determine Controllability. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 59 (1975) pp. 200-204. http://gdmltest.u-ga.fr/item/RLINA_1975_8_58_2_200_0/
[1] Controllability of linear dynamical systems, «Contributions to Differential Equations», 1, 189-213. | MR 155070
, and (1963) -[2] A controllability condition for nonlinear systems, «IEEE Transactions on Automatic Control», AC-17, 569-570. | MR 401251 | Zbl 0262.93008
(1972) -[3] Nonlinear perturbations of quasi-linear control systems, «Journal of Mathematical Analysis and Applications», to appear. | MR 415473
-[4] | MR 447991
(1972) - The Analysis of Linear Integral Equations, McGraw-Hill, New York.[5] | MR 274070
(1970) - Nonlinear System Theory. A Functional Analysis Approach, Prentice-Hall, Englewood Cliffs, New Jersey.[6] Nichtlineare Integralgleichungen nebst Anwendungen, «Acta Math.», 54, 117-176. | MR 1555304 | Zbl 56.0343.03
(1930) -[7] | MR 164101
(1964) - Fixed Points and Topological Degree in Nonlinear Analysis. American Mathematical Society, Providence.[8] | MR 220537 | Zbl 0159.13201
and (1967) - Foundations of Optimal Control Theory. John Wiley and Sons, New York.[9] | MR 159197
(1964) - Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, Oxford.[10] Perturbations of linear control systems, «SIAM J. on Control», 9, 393-400. Errata, Ibid., 11, 395. | MR 317812
(1973) -