Matematica e cognizione
Giardino, Valeria
La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana, Tome 7 (2014), p. 397-415 / Harvested from Biblioteca Digitale Italiana di Matematica
Publié le : 2014-12-01
@article{RIUMI_2014_1_7_3_397_0,
     author = {Valeria Giardino},
     title = {Matematica e cognizione},
     journal = {La Matematica nella Societ\`a e nella Cultura. Rivista dell'Unione Matematica Italiana},
     volume = {7},
     year = {2014},
     pages = {397-415},
     zbl = {1391.00028},
     language = {it},
     url = {http://dml.mathdoc.fr/item/RIUMI_2014_1_7_3_397_0}
}
Giardino, Valeria. Matematica e cognizione. La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana, Tome 7 (2014) pp. 397-415. http://gdmltest.u-ga.fr/item/RIUMI_2014_1_7_3_397_0/

[1] Campbell, J. (a cura di) (2005), Handbook of mathematical cognition, Psychology Press, New York.

[2] Cappelletti, M. e Giardino, V. (2007), `The cognitive basis of mathematical knowledge', in M. Leng, A. Paseau e M. Potter (a cura di), Mathematical Knowledge, Oxford University Press, Oxford, pp. 73-83. | MR 2450933 | Zbl 1328.97011

[3] Carey, S. (2009), `Where our number concepts come from', Journal of Philosophy, vol. 106, pp. 220-54.

[4] Chaãtelet, G. (1993), Les enjeux du mobile. Mathématique, physique, philosophie, Collection des Travayx, Edition du Seuil, Paris.

[5] Cheng, K. (1986), `A purely geometric module in the rat's spatial representation', Cognition, vol. 23, pp. 149-78.

[6] Church, R.M. e Meck, W.H. (1984), `The numerical attribute of stimuli', in H.L. Roitblat, T.G. Bover e H.S. Terrace (a cura di), Animal Cognition, Lawrence Erlbaum Associates, Hillsdale (NJ), pp. 445-64.

[7] Colyvan, M. (2012), An Introduction to the philosophy of mathematics, Cambridge University Press, Cambridge. | MR 2985901 | Zbl 1255.00003

[8] Dehaene, S., Izard, V., Pica, P. e Spelke, E.S. (2006), `Core knowledge of geometry in an Amazonian indigene group', Science, vol. 311, pp. 381-84. | MR 2193091 | Zbl 1226.01001

[9] De Cruz, H. e De Smedt, J. (2013), `Mathematical symbols as epistemic actions', Synthese, vol. 190, pp. 3-19. | Zbl 1284.00039

[10] De Toffoli, S. e Giardino, V. (2014), `Forms and roles of diagrams in knot theory', Erkenntnis, vol. 79, pp. 829-42. | MR 3260948 | Zbl 1304.57013

[11] De Toffoli, S. e Giardino, V. (2015), `An inquiry into the practice of proving in low-dimensional topology', in G. Lolli, M. Panza e G. Venturi (a cura di), From Logic to Practice: Italian Studies in the Philosophy of Mathematics (Boston Studies in the Philosophy and History of Science, Vol. 308), Springer, Berlin, pp. 315-36. | MR 3329904

[12] Feigenson, L., Carey, S. e Hauser, M. (2002), `The representations underlying infants' choice of more: object files versus analog magnitudes', Psychological Science, vol. 13, pp. 150-56.

[13] Fodor, J. (1983), The modularity of mind: An essay on faculty psychology, MIT Press, Cambridge (MA).

[14] Giaquinto, M. (2007), Visual thinking in mathematics, Oxford University Press, Oxford. | MR 2345085 | Zbl 1175.00023

[15] Giardino, V. (di prossima pubblicazione), `I fondamenti cognitivi della matematica umana: dove cercarli?', in P. Graziani, G. Grimaldi e M. Sangoi (a cura di), Animali Razionali. Studi sui confini e sulle possibilità della razionalità, numero speciale di Isonomia - Epistemologica.

[16] Goldin-Meadow, S. (2003), Hearing gesture: How our hands help us think, Belknap Press, Cambridge (MA).

[17] Gordon, P. (2004), `Numerical cognition without words: Evidence from Amazonia', Science, vol. 306, pp. 496-99.

[18] Grosholz, E. (2007), Representation and productive ambiguity in mathematics and the sciences, Oxford University Press, Oxford. | MR 2343928 | Zbl 1209.00016

[19] Hermer, L. e Spelke, E.S. (1994), `A geometric process for spatial reorientation in young children', Nature, vol. 370, pp. 57-59.

[20] Hermer, L. e Spelke, E.S. (1996), `Modularity and development: The case of spatial reorientation', Cognition, vol. 61, pp. 195-232.

[21] Hermer-Vazquez, L., Moffet, A. e Munkholm, P. (2001), `Language, space, and the development of cognitive flexibility in humans: The case of two spatial memory tasks', Cognition, vol. 79, pp. 263-99.

[22] Hersh, R. (a cura di) (2006), 18 Unconventional Essays on the Nature of Mathematics, Springer, Berlin. | MR 2145193 | Zbl 1081.00005

[23] Hutchins, E. (2001), `Distributed cognition', in N. J. Smelser e P. B. Baltes (a cura di), The International Encyclopedia of the Social and Behavioral Sciences, Elsevier, Amsterdam, pp. 2068-72.

[24] Jones, V. F. R. (1998), `A credo of sorts', in G. Dales e G. Oliveri (a cura di), Truth in mathematics, Oxford University Press, Oxford, pp. 203-14. | MR 1688343 | Zbl 1041.57500

[25] Kinzler, K.D. e Spelke, E.S. (2007), `Core systems in human cognition', Progress in Brain Research, vol. 164, pp. 257-64.

[26] Köhler, O. (1951), `The ability of birds to count', Bulletin of Animal Behaviour, vol. 9, pp. 41-45.

[27] Kuhn, T. (1962), The structure of scientific revolutions, University of Chicago Press, Chicago.

[28] Lakoff, G. e Johnson, M. (1980), Metaphors we live by, University of Chicago Press, Chicago.

[29] Lakoff, G. e Núñez, R. (2000), Where mathematics come from: How the embodied mind brings mathematics into being, Basic Books, New York. | MR 1794854

[30] Macbeth, D. (2012), `Seeing how it goes: Paper-and-pencil reasoning in mathematical practice', Philosophia Mathematica, vol. 20, pp. 58-85. | MR 2889175 | Zbl 1266.97007

[31] Matsuzawa, T. (1985), `Use of numbers by a chimpanzee', Nature, vol. 315, pp. 57-59.

[32] Nersessian, N.J. (2008), Creating scientific concepts, MIT Press, Cambridge (MA).

[33] Netz, R. (1999), The shaping of deduction in Greek mathematics: A study of cognitive history, Cambridge University Press, Cambridge. | MR 1683176 | Zbl 1025.01002

[34] Newcombe, N.S. e Uttal, D.H. (2006), `Whorf versus Socrates, round 10', Trends in Cognitive Sciences, vol. 10, pp. 394-96.

[35] Piaget, J. (1948/1960), The child's conception of geometry, Routledge and Kegan Paul, London.

[36] Piaget, J. (1952), The child's conception of number, Routledge and Kegan Paul, London.

[37] Pica, P., Lemer, C., Izard, V. e Dehaene, S. (2004), `Exact and approximate arithmetic in an Amazonian indigene group', Science, vol. 306, pp. 499-503.

[38] Rugani, R., Kelly, D. M., Szelest, I., Regolin, L. e Vallortigara, G. (2010), `Is it only humans that count from left to right?', Biology Letters, vol. 6, pp. 290-92.

[39] Schiralli, M. e Sinclair, N. (2003), `A constructive response to where mathematics comes from', Educational Studies in Mathematics, vol. 52, pp. 79-91.

[40] Schlimm, D. (2013), `Mathematical practice and conceptual metaphors: On cognitive studies of historical developments in mathematics', Topics in Cognitive Science, vol. 5, pp. 283-98.

[41] Sinclair, N. e Gol Tabaghi, S. (2010), `Drawing space: mathematicians' kinetic conceptions of eigenvectors', Educational Studies in Mathematics, vol. 74, pp. 223-40.

[42] Sovrano, V. A., Bisazza, A. e Vallortigara, G. (2003), `Modularity as a fish views it: Conjoining geometric and nongeometric information for spatial reorientation', Journal of Experimental Psychology: Animal Behavior Processes, vol. 29, pp. 199-210.

[43] Sovrano, V. A., Potrich, D., Vallortigara, G. (2013), `Learning of geometry and features in bumblebees (Bombus terrestris)', Journal of Comparative Psychology, vol. 3, pp. 312-18.

[44] Thurston, W. (1994), `On proof and progress in mathematics', Bullettin of the American Mathematical Society, vol. 30, pp. 161-77. | MR 1249357

[45] Uller, C., Carey, S., Huntley-Fenner, G. e Klatt, L. (1999), `What representations might underlie infant numerical knowledge', Cognitive Development, vol. 14, pp. 1-36.

[46] Vallortigara, G., Zanforlin, M. e Pasti, G. (1990), `Geometric modules in animal's spatial representation: A test with chicks', Journal of Comparative Psychology, vol. 104, pp. 248-54.

[47] Wigner, E. P. (1960), `The unreasonable effectiveness of mathematics in the natural sciences', Communications on Pure and Applied Mathematics, vol. 13, pp. 1-14. | MR 824292 | Zbl 0102.00703

[48] Wynn, K. (1992), `Addition and subtraction by human infants', Nature, vol. 358, pp. 749- 50.