@article{RIUMI_2009_1_2_2_295_0, author = {Andrea Tommasoli}, title = {Principio del massimo, operatori di media e quasi limitatezza in contesti non euclidei}, journal = {La Matematica nella Societ\`a e nella Cultura. Rivista dell'Unione Matematica Italiana}, volume = {2}, year = {2009}, pages = {295-297}, language = {it}, url = {http://dml.mathdoc.fr/item/RIUMI_2009_1_2_2_295_0} }
Tommasoli, Andrea. Principio del massimo, operatori di media e quasi limitatezza in contesti non euclidei. La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana, Tome 2 (2009) pp. 295-297. http://gdmltest.u-ga.fr/item/RIUMI_2009_1_2_2_295_0/
[1] | MR 2363343 | Zbl 1128.43001
, e , Stratified Lie groups and potential theory for their sub-Laplacians (Springer, 2007).[2] Sub-solutions and mean-value operators for ultraparabolic equations on Lie groups, Mathematica Scandinavica, 101 (2007), 83-103. | MR 2353243 | Zbl 1153.35352
,[3] Riesz and Poisson-Jensen representation formulas for a class of ultraparabolic operators on Lie groups, Pot. Analysis, 30 (2009), 179-200. | MR 2471147 | Zbl 1172.31001
e ,[4] Maximum Principle, nonhomogeneous Harnack inequality, and Liouville theorems for X-elliptic operators, Comm. in Partial Diff. Eq., 28 (2003), 11,12:1833-1862. | MR 2015404 | Zbl 1064.35036
and ,[5] X-elliptic operators and X-control distances, Ricerche Mat., 49, Special issue in memory of E. De Giorgi (2000), 223-243. | MR 1826225 | Zbl 1029.35102
and ,[6] An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterranean Journal of Mathematics, 1 (2004), 51-80. | MR 2088032 | Zbl 1150.35354
and ,[7] A new criterion of Dirichlet Regularity via the Quasi-Boundedness of the fundamental Superharmonic Function, J. London Math. Soc., 19 (1979), 301-311. | MR 533330 | Zbl 0404.31003
,