Equivalenze tra teoremi: il programma di ricerca della reverse mathematics
Marcone, Alberto
La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana, Tome 2 (2009), p. 101-126 / Harvested from Biblioteca Digitale Italiana di Matematica

La logica matematica ha sviluppato strumenti in grado di rendere precise affermazioni del tipo «il teorema A è più forte del teorema B». In particolare sono stati ottenuti un consistente numero di risultati che stabiliscono la forza assiomatica di molti teoremi in diversi settori della matematica. I risultati in questione hanno dato origine ad un programma di ricerca noto con il nome di reverse mathematics. Nel presente articolo evidenziamo gli «antenati» della reverse mathematics, descriviamo lo stato attuale della ricerca, e illustriamo il significato della reverse mathematics per i fondamenti della matematica.

Mathematical Logic can give a precise meaning to statements of the form «Theorem A is stronger than Theorem B». In the last few decades logicians have proved many results about the axiomatic strength of theorems from different areas of mathematics. These results form a research project known as reverse mathematics. In this paper we discuss the antecedents of reverse mathematics, describe the current research in the area, and elucidate the import of reverse mathematics upon the foundations of mathematics.

Publié le : 2009-04-01
@article{RIUMI_2009_1_2_1_101_0,
     author = {Alberto Marcone},
     title = {Equivalenze tra teoremi: il programma di ricerca della reverse mathematics},
     journal = {La Matematica nella Societ\`a e nella Cultura. Rivista dell'Unione Matematica Italiana},
     volume = {2},
     year = {2009},
     pages = {101-126},
     zbl = {1186.03020},
     mrnumber = {2537477},
     language = {it},
     url = {http://dml.mathdoc.fr/item/RIUMI_2009_1_2_1_101_0}
}
Marcone, Alberto. Equivalenze tra teoremi: il programma di ricerca della reverse mathematics. La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana, Tome 2 (2009) pp. 101-126. http://gdmltest.u-ga.fr/item/RIUMI_2009_1_2_1_101_0/

[1] Aharoni, Ron - Magidor, Menachem - Shore, Richard A., On the strength of König's duality theorem for infinite bipartite graphs, J. Combin. Theory Ser. B, 54, n. 2 (1992), 257-290. | MR 1152453 | Zbl 0754.05053

[2] Avigad, Jeremy, Number theory and elementary arithmetic, Philos. Math. (3), 11 (2003), 257-284. | MR 2006194 | Zbl 1050.03005

[3] Brown, Douglas K., Notions of compactness in weak subsystems of second order arithmetic, In Simpson [23], 47-66. | MR 2185427 | Zbl 1087.03039

[4] Ciesielski, Krzysztof, Set theory for the working mathematician, Cambridge University Press (1997), xii+236. | MR 1475462 | Zbl 0938.03067

[5] Erdŏs, P. - Komjáth, P., Countable decompositions of 2 and 3, Discrete Comput. Geom., 5, n. 4 (1990), 325-331. | MR 1043714

[6] Friedman, Harvey, Necessary uses of abstract set theory in finite mathematics, Adv. in Math., 60, n. 1 (1986), 92-122. | MR 839484 | Zbl 0613.03028

[7] Friedman, Harvey, Finite functions and the necessary use of large cardinals, Ann. of Math. (2), 148, n. 3 (1998), 803-893. | MR 1670057 | Zbl 0941.03050

[8] Friedman, Harvey - Simpson, Stephen G., Issues and problems in reverse mathematics, In Computability theory and its applications (Boulder, CO 1999), Amer. Math. Soc. (2000), 127-144. | MR 1770738 | Zbl 0967.03050

[9] Hilbert, David - Bernays, Paul, Grundlagen der Mathematik. I, Springer-Verlag, Berlin (1968), xv+473. | MR 237246

[10] Hilbert, David - Bernays, Paul, Grundlagen der Mathematik. II, Springer-Verlag, Berlin (1970), xiv+561. | MR 272596

[11] Howard, Paul - Rubin, Jean E., Consequences of the axiom of choice, American Mathematical Society, Providence RI (1998), viii+432. | MR 1637107 | Zbl 0947.03001

[12] Humphreys, A. James, Did Cantor need set theory?, In Simpson [23], 244-270. | MR 2185439 | Zbl 1097.03052

[13] Kanamori, Akihiro, The higher infinite, Springer-Verlag, Berlin (1994), xxiv+536. | MR 1321144 | Zbl 0813.03034

[14] Cole Kleene, Stephen, Introduction to metamathematics, D. Van Nostrand Co. Inc., NewYork, N.Y. (1952), x+550. | MR 51790

[15] Lévy, Azriel, Basic set theory, Springer-Verlag, Berlin (1979), xiv+391. | MR 533962

[16] Millman, Richard S. - Parker, George D., Geometry, Springer-Verlag, New York (1991), xiv+370. | MR 1083550

[17] Mummert, Carl - Simpson, Stephen G., Reverse mathematics and Π21 comprehension, Bull. Symbolic Logic, 11, n. 4 (2005), 526-533. | MR 2198712 | Zbl 1106.03050

[18] Rubin, Herman - Rubin, Jean E., Equivalents of the axiom of choice. II, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., 116 (1985), xxviii+322. | MR 798475 | Zbl 0582.03033

[19] Simpson, Stephen G., Which set existence axioms are needed to prove the Cauchy/Peano theorem for ordinary differential equations?J. Symbolic Logic, 49, n. 3 (1984), 783-802. | MR 758929 | Zbl 0584.03039

[20] Simpson, Stephen G., Partial realizations of Hilbert's Program, J. Symbolic Logic, 53, n. 2 (1988), 349-363. | MR 947843 | Zbl 0654.03003

[21] Simpson, Stephen G., On the strength of König's duality theorem for countable bipartite graphs, J. Symbolic Logic, 59, n. 1 (1994), 113-123. | MR 1264968 | Zbl 0798.03060

[22] Simpson, Stephen G., Subsystems of second order arithmetic, Springer-Verlag, Berlin (1999), xiv+445. | MR 1723993 | Zbl 0909.03048

[23] Stephen G. Simpson editor, Reverse mathematics 2001. Lecture Notes in Logic. Association for Symbolic Logic, La Jolla, Ca, 2005. | MR 2186912

[24] Tait, William W., Finitism, J. Philos., 78 (1981), 524-546.

[25] Weyl, Hermann, Das Kontinuum: Kritische Untersuchungen über die Grundlagen der Analysis, Veit, Leipzig (1918).