La teoria dei sistemi dinamici si distingue da altri settori della matematica non per gli oggetti che studia ma per le domande che si pone su di loro. Per esempio, un sistema dinamico discreto è semplicemente un'applicazione (misurabile, continua, differenziable, olomorfa...) di uno spazio in sé. Studiare un'applicazione dal punto di vista dinamico significa allora studiare il comportamento qualitativo delle iterate al tendere di all'infinito. In questo articolo vogliamo dare un'idea del tipo di questioni che si affrontano in dinamica restringendoci a un argomento limitato ma importante, la dinamica discreta olomorfa locale, che studia il comportamento dinamico di applicazioni olomorfe definite nell'intorno di un punto fisso. Nata alla fine dell'ottocento, più o meno in contemporanea con l'intero campo dei sistemi dinamici, ha avuto un grosso sviluppo negli ultimi trent'anni, con la dimostrazione di importanti risultati e lo sviluppo di nuove significative tematiche e naturali problemi aperti. Ne presenteremo le problematiche di base e i principali risultati ottenuti, evidenziando le idee più significative, almeno nel caso unidimensionale.
The difference between the theory of dynamical systems and other branches of Mathematics is not in the objects of study, but in the questions asked about them. For instance, a discrete dynamical system simply is a (measurable, continuous, differentiable, holomorphic...) self-map of a space. Studying a map from a dynamical point of view then means studying the qualitative behavior of the iterates as goes to infinity. In this paper we would like to give an idea of the kind of arguments the theory of dynamical systems deals with, concentrating our attention to a limited but important subject, the local discrete holomorphic dynamics, that is the study of the dynamical behaviour of holomorphic maps defined in a neighbourhood of a fixed point. Born toward the end of the nineteenth century, more or less in the same years the general theory of dynamical systems was born, local discrete holomorphic dynamics have seen major developments in the last thirty years, when several important results have been proved, and new significants areas have started to be explored, providing a wealth of natural open problems. We shall describe the basic themes and main results of the theory, stressing the more significant ideas, at least in the one-dimensional case.
@article{RIUMI_2008_1_1_3_409_0, author = {Marco Abate}, title = {Sistemi dinamici discreti olomorfi locali}, journal = {La Matematica nella Societ\`a e nella Cultura. Rivista dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {409-441}, mrnumber = {2500205}, language = {it}, url = {http://dml.mathdoc.fr/item/RIUMI_2008_1_1_3_409_0} }
Abate, Marco. Sistemi dinamici discreti olomorfi locali. La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana, Tome 1 (2008) pp. 409-441. http://gdmltest.u-ga.fr/item/RIUMI_2008_1_1_3_409_0/
[A1]
, An introduction to hyperbolic dynamical systems. I.E.P.I.Pisa, 2001.[A2] Discrete local holomorphic dynamics. In Proceedings of 13th. Seminar on Analysis and Its Applications, Isfahan 2003. Eds. et al., University of Isfahan, Iran, 2005, 1-32. | MR 2114495 | Zbl 1072.37036
,[BS] Polynomial diffeomorphisms of . VI. Connectivity of J. Ann. of Math., 148 (1998), 695-735. | MR 1668567 | Zbl 0916.58022
- ,[B1] Smooth combs inside hedgehogs. Disc. Cont. Dyn. Sys., 12 (2005), 853-880. | MR 2128730 | Zbl 1073.37056
,[B2] Hedgehogs of Hausdorff dimension one, Preprint, 2003. | MR 2465597 | Zbl 1168.37013
,[Bö] The principal laws of convergence of iterates and their application to analysis. Izv. Kazan. Fiz.-Mat. Obshch., 14 (1904), 155-234.
,[Bry1] Convergence of transformations of differential equations to normal forms. Dokl. Akad. Nauk. USSR, 165 (1965), 987-989. | MR 192098
,[Bry2] Analytical form of differential equations, I. Trans. Moscow Math. Soc., 25 (1971), 131-288. | Zbl 0272.34018
,[Bry3] Analytical form of differential equations, II. Trans. Moscow Math. Soc., 26 (1972), 199-239. | Zbl 0269.34006
,[BC] The Brjuno function continuously estimates the size of quadratic Siegel disks. Ann. of Math., 164 (2006), 265-312. | MR 2233849 | Zbl 1109.37040
- ,[C] On the local structure of conformal mappings and holomorphic vector fields. Astérisque, 59-60 (1978), 83-94.
,[Cr1] Zum Zentrumproblem. Math. Ann., 98 (1927), 151-163. | MR 1512397
,[Cr2] Über die Häufigkeit der Nichtzentren. Math. Ann., 115 (1938), 573-580. | MR 1513203 | Zbl 0018.36802
,[É1] Les fonctions résurgentes. Tome I: Les algèbres de fonctions résurgentes. Publ. Math. Orsay, 81-05, Université de Paris-Sud, Orsay, 1981. | MR 670417 | Zbl 0499.30034
,[É2] Les fonctions résurgentes. Tome II: Les fonctions résurgentes appliquées à l'itération. Publ. Math. Orsay81-06, Université de Paris-Sud, Orsay, 1981. | MR 670418 | Zbl 0499.30035
,[F1] Sur les équations fonctionnelles, I. Bull. Soc. Math. France, 47 (1919), 161-271. | MR 1504787 | Zbl 47.0921.02
,[F2] Sur les équations fonctionnelles, II. Bull. Soc. Math. France, 48 (1920, 33-94. | MR 1504792
,[F3] Sur les équations fonctionnelles, III. Bull. Soc. Math. France, 48 (1920), 208-314. | MR 1504797
,[HK] | MR 1326374 | Zbl 0878.58020
- , Introduction to the modern theory of dynamical systems. Cambridge Univ. Press, Cambridge, 1995.[He] Recent results and some open questions on Siegel's linearization theorem of germs of complex analytic diffeomorphisms of near a fixed point. Proc. 8th Int. Cong. Math. Phys., World Scientific, Singapore, 1986, pp. 138-198. | MR 915567
,[HP] Superattractive fixed points in . Indiana Univ. Math. J., 43 (1994), 321-365. | MR 1275463 | Zbl 0858.32023
- ,[I] Nonlinear Stokes phenomena. In Nonlinear Stokes phenomena. Adv. in Soviet Math., 14, Am. Math. Soc., Providence, 1993, 1-55. | MR 1206041
,[K] On the iteration of analytic functions. Funk. Eqvacioj, 14 (1971), 197-238. | MR 302876 | Zbl 0237.30008
,[Kœ] Recherches sur les integrals de certain equations fonctionelles. Ann. Sci. Éc. Norm. Sup.1 (1884), 1-41.
,[L] Étude sur les equations fonctionelles à une ou plusieurs variables. Ann. Fac. Sci. Toulouse, 11 (1897), E1-E110. | MR 1508188
,[M1] Travaux d'Écalle et de Martinet-Ramis sur les systèmes dynamiques. Astérisque, 92-93 (1981/82), 59-73. | MR 689526
,[M2] Introduction aux travaux de J. Écalle. Ens. Math., 31 (1985), 261-282. | MR 819354
,[Ma]
, An introduction to small divisors problems. I.E.P.I., Pisa, 2000.[Mi] 160. Princeton University Press, Princeton, 2006. | MR 2193309 | Zbl 1085.30002
, Dynamics in one complex variable. Third edition. Annals of Mathematics Studies,[P1] Sur les dynamiques holomorphes non linéarisables et une conjecture de V.I. Arnold. Ann. Sci. École Norm. Sup., 26 (1993), 565-644. | MR 1241470 | Zbl 0812.58051
,[P2] Topology of Julia sets and hedgehogs. Preprint, Université de Paris-Sud, 1994, 94-48.
,[P3] Non-linearizable holomorphic dynamics having an uncountable number of symmetries. Invent. Math., 199 (1995), 67-127. | MR 1309972 | Zbl 0862.58045
,[P4] Hedgehogs dynamics. Preprint, 1995.
,[P5] Sur une question de Dulac et Fatou. C.R. Acad. Sci. Paris, 321 (1995), 1045-1048. | MR 1360570
,[P6] Fixed points and circle maps. Acta Math., 179 (1997), 243-294. | MR 1607557 | Zbl 0914.58027
,[P7] Total convergence or general divergence in small divisors. Comm. Math. Phys., 223 (2001), 451-464. | MR 1866162 | Zbl 1161.37331
,[S] Topological classification of germs of conformal mappings with identity linear part. Moscow Univ. Math. Bull., 37 (1982), 60-65. | MR 778885 | Zbl 0508.30015
,[Si] Iteration of analytic functions. Ann. of Math., 43 (1942), 607- 612. | MR 7044 | Zbl 0061.14904
,[V] Analytic classification of germs of conformal maps with identity linear part. Func. Anal. Appl., 15 (1981), 1-17. | MR 609790
,[Y1] Linéarisation des germes de difféomorphismes holomorphes de . C.R. Acad. Sci. Paris, 306 (1988), 55-58. | MR 929279
,[Y2] Théorème de Siegel, nombres de Bryuno et polynômes quadratiques. Astérisque, 231 (1995), 3-88. | MR 1367353
,