@article{RIUMI_2008_1_1_2_303_0, author = {Dario Daniele Monticelli}, title = {Principi di massimo ed applicazioni per una classe di operatori lineari ellittici degeneri}, journal = {La Matematica nella Societ\`a e nella Cultura. Rivista dell'Unione Matematica Italiana}, volume = {1}, year = {2008}, pages = {303-306}, language = {it}, url = {http://dml.mathdoc.fr/item/RIUMI_2008_1_1_2_303_0} }
Monticelli, Dario Daniele. Principi di massimo ed applicazioni per una classe di operatori lineari ellittici degeneri. La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana, Tome 1 (2008) pp. 303-306. http://gdmltest.u-ga.fr/item/RIUMI_2008_1_1_2_303_0/
[1] A maximum principle for a class of hyperbolic equations and applications to equations of mixed elliptic-hyperbolic type, Comm. Pure Appl. Math., 6 (1953), 455-470. | MR 58835 | Zbl 0090.07401
, and .[2] Classification of solution of some nonlinear elliptic equations, Duke Math J., 63 (3) (1991), 615-622. | MR 1121147 | Zbl 0768.35025
and .[3] An embedding theorem for Sobolev spaces related to nonsmooth vector fields and Harnack inequality, Comm. Partial Differential Equations, 9 (13) (1984), 1237-1264. | MR 764663 | Zbl 0589.46023
and .[4] Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (3) (1979), 209-243. | MR 544879 | Zbl 0425.35020
, and .[5] Conservation laws for equations of mixed elliptic-hyperbolic and degenerate types, Duke Math. J., 127 (2) (2005), 251-290. | MR 2130413 | Zbl 1078.35078
and .