@article{RCP25_1995__47__33_0, author = {Hosono, S. and Klemm, A. and Theisen, S.}, title = {An Extended Lecture on Mirror Symmetry}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, volume = {47}, year = {1995}, pages = {33-76}, language = {en}, url = {http://dml.mathdoc.fr/item/RCP25_1995__47__33_0} }
Hosono, S.; Klemm, A.; Theisen, S. An Extended Lecture on Mirror Symmetry. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 47 (1995) pp. 33-76. http://gdmltest.u-ga.fr/item/RCP25_1995__47__33_0/
[1] For introductions, see e.g. Superstring Theory, Vols. I and II, Cambridge University Press, 1986; | Zbl 0619.53002
, and ,Lectures on String Theory, Springer Lecture Notes in Physics, Vol. 346, 1990; | MR 1028064 | Zbl 0716.53063
and ,Introduction to Superstrings, Springer 1988 | MR 954610 | Zbl 0655.58001
,[2] Lectures on String Perturbation Theory, in Superstrings 88, Trieste Spring School, Ed. Greene et al. World Scientific (1989) 189 | MR 1091556
, ,[3] 262 (1985) 593, A. Sen, Phys. Rev. D32 (1985) 2102 and Phys. Rev. Lett. 55 (1985) 1846 | MR 819433
, , and , Nucl. Phys. B[4] 178B (1986) 365
and , Phys. Lett.[5] For review, see Target Space Duality in String Theory, hep-th 9401139, to be published in Phys. Rep. | MR 1288936
, and ,[6] | MR 1026264
in Proc. of the 1987 ICTP Summer Workshop in High Energy Physics and Cosmology, Trieste, ed. G. Furlan et al., World Scientific[7] 324 (1989) 427 | MR 1025424
, and , Nucl. Phys. B[8] 338 (1990) 15 | MR 1059831
and , Nucl. Phys. B[9] Essays on Mirror Manifolds (ed. S.-T. Yau), Int. Press, Hong Kong, 1992
[10] | MR 1002959
, and , Utrecht preprint THU-87/30;320 (1989) 669; | MR 1004372
and Nucl. Phys. B322 (1989) 169
, , , Nucl. Phys. B[11] Moduli Spaces, Effective Actions and Duality Symmetry in String Compactifications, in Proc. of the Third Hellenic School on Elementary Particle Physics, Corfu 1989, Argyres et al.(eds), World Scientific 1990
and ,[12] 359 (1991) 21
, , and , Nucl. Phys. B[13] Picard-Fuchs Equations and Mirror Maps for Hypersurfaces, in Essays on Mirror Manifolds (ed. S.-T. Yau), Int. Press, Hong Kong, 1992; | MR 1191426 | Zbl 0904.32020
,389 (1993) 153; | MR 1202211
and , Nucl. Phys. B391 (1993) 358 | MR 1208020
, Nucl. Phys. B[14] 1 (1993) 29; | MR 1201748 | Zbl 0789.14005
and , Duke Math. Journ., Int. Res. NoticesMirror Maps and Instanton Sums for Complete Intersections in Weighted Projective Space, preprint LMU-TPW 93-08 | MR 1287096 | Zbl 1020.32507
and ,[15] Mirror Symmetry for Two Parameter Models I, preprint CERN-TH.6884/93 | Zbl 0899.14017
, , , and ,[16] Mirror Symmetry, Mirror Map and Applications to Calabi-Yau Hypersurfaces, to appear in Comm. Math. Phys. | MR 1316509 | Zbl 0814.53056
, , and ,[17] Mirror Symmetry, Mirror Map and Applications to Complete Intersection Calabi-Yau Spaces, preprint LMU-TPW-94-03 (to appear) | MR 1319280 | Zbl 1020.32508
, , and ,[18] Space-Time Topology Change: the Physicsof Calabi-Yau Moduli Space, preprint IASSNS-HEP-93-81; | Zbl 0844.32016
. and ,Calabi-Yau Moduli Space, Mirror Manifolds and Space-Time Topology Change in String Theory, preprint IASSNS-HEP-93-38: | MR 1274435 | Zbl 0899.32006
. andThe Monomial-Divisor Mirror Map, preprint IASSNS-HEP-93-43 | MR 1253648 | Zbl 0798.14030
. and[19] Periods for Calabi-Yau and Landau-Ginsburg Vacua, preprint CERN-TH.6865/93: | Zbl 1009.32500
, , , , , and ,On Periods for String Compactification. preprint HUPAPP-93-6 | Zbl 0990.32501
, , and ,[20] Mirror Symmetry for Hypersurfaces in Weighted Projective Space and Topological Couplings, preprint IASSNS-HEP-93-65 | MR 1282649 | Zbl 0990.32500
and ,[21] 258 (1985) 46 | MR 800347
, , and , Nucl. Phys. B[22] Easily accessible introductions to Calabi-Yau manifolds are What is a Calabi-Yau Space ? in Unified String Theories, M. Green and D. Gross, editors, World Scientific 1986
,Introduction to Complex Manifolds, Lectures at the 1987 Trieste Spring School, published in the proceedings. For a rigorous mathematical treatment we refer to A.L. Bessis, Einstein Manifolds, Springer 1987 | MR 1034772
,Principles of Algebraic Geometry, John Wiley & Sons 1978; | MR 507725 | Zbl 0836.14001
and ,Complex Manifolds and Deformation of Complex Structures, Springer 1986 | MR 815922 | Zbl 0581.32012
,[23] A good and detailed introduction to Calabi-Yau manifolds is the book by , Calabi-Yau Manifolds. World Scientific 1991
[24] 74 (1977), 1798; | Zbl 0355.32028
, Proc. Natl. Acad. Sci. USA31 (1978) 339 | MR 480350 | Zbl 0369.53059
Comm. Pure Appl. Math.[25] 68 (1958) 450 | MR 112157 | Zbl 0088.38004
, and , Ann. Math.[25] 68 (1958) 450 | MR 112157 | Zbl 0088.38004
, and , Ann. Math.[26] Mathematical Aspects of String Theory, ed. S. T. Yau, World Scientific, Singapore (1987) | MR 915812 | Zbl 0651.00012
, in[27] 55 (1985) 2547
, Phys. Rev. Lett. in Unified String Theory, eds. M. Green and D. Gross, World Scientific 1986;101 (1985) 341 | MR 815189
and , Comm. Math. Phys.[28] 282 (1987) 13; | MR 869937
, , and , Nucl. Phys. B279 (1987) 465; | MR 867241
and , Nucl. Phys. B351 (1991) 353; | MR 1093574
, and Nucl. Phys. B7 (1992) 3859;
, , and , Mod. Phys. Lett. A397 (1993) 379 | MR 1219527
, , and , Nucl. Phys. B[29] 199B (1987) 380 | MR 929596
, Phys. Lett.311 (1988) 191 | MR 974275
and Nucl. Phys. B[30] 309 (1988) 295 | MR 967477
and , Nucl. Phys. B[31] 278 (1987) 769, Nucl. Phys. B289 (1987) 319 | MR 895317
, , and , Nucl. Phys. B[32] 225B (1989) 363 | MR 1009091
, , and , Phys. Lett.[33] 151 (1993) 245 | MR 1204770 | Zbl 0776.53043
and , Comm. Math. Phys.[34] 118 (1988) 411 | MR 958805 | Zbl 0674.58047
, Comm. Math. Phys.[35] 284 (1988) 613 | MR 930976
, , and , Nucl. Phys. B[36] 11 (1976) 77 and Nucl. Phys. B114 (1976) 297 and Phys. Lett. 62B (1976) 105
et al., Nucl. Phys. B[37] 184B (1987) 191 | MR 879234
and , Phys. Lett.[38] 301 (1988) 357 | MR 936751
and , Nucl. Phys. B[39] 202 (1982) 253;
, Nucl. Phys. B17C (1986) 454 | MR 851628
and , Ann. Phys.[40] 407 (1993) 115 | MR 1242064
, and , Nucl. Phys. B[41] 70 (1993) 3688 and Kähler manifolds with positive first Chern class and mirrors of rigid Calabi-Yau manifolds, preprint BONN-HE 93-47 | MR 1220210
, Phys. Rev. Lett.[42] 303 (1988) 286 | MR 953719
, Nucl. Phys. B[43] 4 (1989) 2475; | MR 1017548
, and , Int. J. Mod. Phys. A11 (1989) 342 | MR 1124909 | Zbl 0957.81642
, Nucl. Phys. (Proc. Suppl.)[44] Connected Calabi-Yau compactifications, in Strings '88, J. Gates et al. (eds), World Scientific 1989 | Zbl 0938.81527
, and ,330 (1990) 49;
, and Nucl. Phys. B329 (1990) 582
and , Nucl. Phys. B[45] 329 (1990) 27 | MR 1036216
, and , Nucl. Phys. B[46] 134B (1984) 37;
, , , and , Phys. Lett.245 (1984) 89; | MR 762191
and , Nucl. Phys. B140B (1984) 307; | MR 746903
, , and , Phys. Lett.255 (1985) 569;
, and , Nucl. Phys. B250 (1985) 385
, , , , , and , Nucl. Phys. B[47] 388 (1993) 113;
and , Nucl. Phys. B411 (1994) 559 | MR 1257839
and , Nucl. Phys. B[48] 298 (1988) 493;
, , and , Nucl. Phys. B306 (1989) 105
, and , Nucl. Phys. B[49] Generalized Hypergeometric Functions and Rational Curves on Calabi-Yau Complete Intersections in Toric Varieties, preprint 1992 | MR 1328251 | Zbl 0843.14016
and ,[50] 956 Springer-Verlag (1992) 36 | MR 704986 | Zbl 0516.14014
, Weighted Projective Varieties in Lecture Notes in Mathematics[51] Working with Weighted Complete Intersections, Max-Planck-Institut Series, No. 35 (1989) Bonn
,[52] 111 (1987) 247 | MR 899851 | Zbl 0628.53065
, and , Comm. Math. Phys.[53] 153 (1993) 57 | MR 1218933
and , Comm. Math. Phys.[54] 261 (1985) 678 | MR 818423
, , and , Nucl. Phys. B274 (1986) 285 | MR 851703
, , and and Nucl. Phys. B[55] 3 (1987) 256; | MR 916270 | Zbl 0649.14024
and , Acta Math. Sinica (NS)30 (1989) 523 | MR 1010170 | Zbl 0661.14031
, J. Diff. Geom.[56] 405 (1993) 305;
and . Nucl. Phys. B314B (1993) 31; | MR 1237377
, Phys. Lett.Diplom Thesis, TU-München, 1993
,[57] Convex Bodies and Algebraic Geometry: an Introduction to the Theory of Toric Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 15, Springer Verlag 1988; | MR 922894 | Zbl 0628.52002
,33 (1978) 97;
, Russian Math. Surveys,The Topology of Torus Actions on Symplectic Manifolds, Progress in Mathematics, Birkhäuser 1991; | MR 1106194 | Zbl 0726.57029
,Introduction to Toric Varieties, Annals of Mathematics Studies, Princeton University Press 1993; | MR 1234037 | Zbl 0813.14039
,Singularities of Differntial Maps, Birkhäuser 1985, Vol. II, Chapter 8 | MR 777682
, and ,[58] 69 (1993) 349 | MR 1203231 | Zbl 0812.14035
, Duke Math. Journal[59]
, Journal Alg. Geom., to be published[60] Quantum Cohomology Rings of Toric Manifolds, preprint 1992 | MR 1265307 | Zbl 0806.14041
,[61] On the Hodge Structure of Projective Hypersurfaces in Toric Varieties, preprint 1993 | MR 1290195 | Zbl 0851.14021
and ,[62] 124 (1951) 77 | MR 45384 | Zbl 0043.30302
, Math. Annalen[63] 4 (1986) 11. | MR 879909
and , Expo. Math.[64] 303B (1993) 249
, and , Phys. Lett.The Monomial-Divisor Mirror Map, preprint IASSNS-HEP-93/43 | Zbl 0798.14030
, and and[65] Topological Couplings of Calabi-Yau Orbifolds, Max-Planck-Institut Serie No. 22 (1992), to appear in J. of Group Theory in Physics | MR 1191431
:[66] Ordinary Differential Equations, Dover 1956 | JFM 53.0399.07 | MR 10757 | Zbl 0063.02971
,[67] Fuchsian Differential Equations, Braunschweig (1987) Vieweg | MR 986252 | Zbl 0618.35001
,[68] 76 (1970) 228 | MR 258824 | Zbl 0214.19802
, Bull. Amer. Math. Soc.[69] 90 (1969) 460 | MR 260733
, Ann. of Math.[70] 298 (1988) 458 | MR 928307
, Nucl. Phys. B[71] 28 (1989) 12
, and , Func. Anal. Appl.84 (1990) 255 | MR 1080980
, and and Adv. Math.[72] Where is the Large Radius Limit, preprint IASSNS-HEP-93/68 and Compactifications of Moduli Spaces Inspired by Mirror Symmetry, preprint DUK-M- 93-06
,[73] Decomposition of Toric Morphisms, in Progress in Mathematics 36, M. Artin and J. Tate, eds, Birkhäuser 1983 | MR 717617 | Zbl 0571.14020
,[74] | MR 1148627 | Zbl 1058.81629
and , in the Proceedings of the Texas A & M Strings '89 Workshop; ed. R. Arnowitt et al., World Scientific 1990[75] 330 (1990) 49;
, and Nucl. Phys. B355 (1991) 455
and , Nucl. Phys. B[76] Some observations on the Infinitesimal Period Relations for Regular Threefolds with Trivial Canonical Bundle, in Progress in Mathematics 36, M. Artin and J. Tate, eds; Birkhäuser, 1983 | MR 717607 | Zbl 0543.14005
and ,[77] 133 (1990) 163 | MR 1071240 | Zbl 0716.53068
, Comm. Math. Phys.[78] 241B (1990) 57 and Class. Quantum Grav. 7 (1990) 1767;
, and , Phys. Lett.278B (1992) 240 | MR 1159065
and , Phys. Lett.[79] 8 (1993) 79 | Zbl 0802.53055
, , , and , Int. J. Mod. Phys. A[80] 166B (1986) 397 | MR 827697
and , Phys. Lett.