A Proof Via the Seiberg-Witten Moduli Space of Donaldson’s Theorem on Smooth 4-Manifolds with Definite Intersection Forms
Katz, Mikhail
Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 47 (1995), p. 269-274 / Harvested from Numdam
Publié le : 1995-01-01
@article{RCP25_1995__47__269_0,
     author = {Katz, Mikhail},
     title = {A Proof Via the Seiberg-Witten Moduli Space of Donaldson's Theorem on Smooth $4$-Manifolds with Definite Intersection Forms},
     journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25},
     volume = {47},
     year = {1995},
     pages = {269-274},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RCP25_1995__47__269_0}
}
Katz, Mikhail. A Proof Via the Seiberg-Witten Moduli Space of Donaldson’s Theorem on Smooth $4$-Manifolds with Definite Intersection Forms. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 47 (1995) pp. 269-274. http://gdmltest.u-ga.fr/item/RCP25_1995__47__269_0/

[1] N. Elkies, A characterization of the 𝐙 n lattice, Math. Research Letters 2 (1995). | MR 1338791 | Zbl 0855.11032

[2] J.-P. Serre, A Course in Arithmetic. | Zbl 0225.12002

[3] E. Witten, Monopoles and four-manifolds, Math. Research Letters 1 (1994) 769-796. | MR 1306021 | Zbl 0867.57029

[4] J. Milnor and J. Stasheff, Characteristic classes. Princeton University Press, 1974. | MR 440554 | Zbl 0298.57008

[5] D. Kotschick, Non-trivial harmonic spinors on generic algebraic surfaces, Proc. of the AMS. | Zbl 0878.58057

[6] P. Kronheimer and T. Mrowka, The genus of embedded surfaces in the projective plane, Math. Research Letters 1 (1994) 797-808. | MR 1306022 | Zbl 0851.57023

[7] B. Booss-Bavnbek and K. Wojciechowski, Elliptic boundary problems for Dirac operators. Birkhauser, 1993. | MR 1233386 | Zbl 0797.58004

[8] K. Wojciechowski and S. Klimek, Unique continuation property and surjectivity of elliptic operators of order 1, preprint.

[9] S. Donaldson, The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Differential Geometry 26 (1987) 397-428. | MR 910015 | Zbl 0683.57005