Bigèbres et probabilités, d'après M. Schurmann
Meyer, P. A.
Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 45 (1993), p. 153-162 / Harvested from Numdam
Publié le : 1993-01-01
@article{RCP25_1993__44__153_0,
     author = {Meyer, Paul-Andr\'e},
     title = {Big\`ebres et probabilit\'es, d'apr\`es M. Schurmann},
     journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25},
     volume = {45},
     year = {1993},
     pages = {153-162},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/RCP25_1993__44__153_0}
}
Meyer, P. A. Bigèbres et probabilités, d'après M. Schurmann. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 45 (1993) pp. 153-162. http://gdmltest.u-ga.fr/item/RCP25_1993__44__153_0/

[1] M. Schurmann Positive and conditionally positive linear functionals on coalgebras. Quantum Probability II, Springer LN 1136, 1985, p. 475-492. | MR 819527 | Zbl 0581.16007

[2] M. Schurmann Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations, Prob. Th. Rel. Fields, 84, 1990, p. 473-490. | MR 1042061 | Zbl 0685.60070

[3] M. Schurmann A class of representations of involutive bialgebras, Math. Proc. Cambridge Phil Soc, 107, 1990, p.149-175 | MR 1021880 | Zbl 0704.46040

[4] M. Schurmann The Azéma martingales as components of quantum independent increment processes, Sem. Prob. XXV, Springer LN 1485, p. 24-30. | Numdam | MR 1187766 | Zbl 0745.60043

[5] M. Schurmann White noise on involutive bialgebras, Quantum Probability VI, 1992, p. 401-419, World Scientific. | MR 1149841 | Zbl 0932.60104

[6] M. Schurmann A central limit theorem for coalgebras, Probability Measures on Groups VIII, Springer LN 1210, 1986, p. 153-157. | MR 879003 | Zbl 0629.46057

[7] M. Schurmann Infinitely divisible states on cocommutative bialgebras, Probability Measures on Groups IX, Springer LN 1379, 1987, p. 310-324. | MR 1020537 | Zbl 0706.46042

[8] M. Schurmann Noncommutative stochastic processes with independent and stationary additive increments, J. Multiv. Anal, 38, 1990, p. 15-35. | MR 1128934 | Zbl 0694.46045

[9] M. Schurmann Gaussian states on bialgebras, Quantum Probability V, Springer LN 1442, p. 347-367. | MR 1091320 | Zbl 0728.46042

[10] M. Schurmann Quantum q-white noise and a q-central limit theorem. Comm. Math. Phys., 140, 1991, p.589-615. | MR 1130699 | Zbl 0734.60048

Evans (M.). Existence of quantum diffusions, Prob. Th. Rel. Fields, 81, 1989, p.473-483. | MR 995806 | Zbl 0667.60060

Evans (M.) and Hudson (R.L.). Multidimensional quantum diffusions, Quantum Probability III, Springer LN 1303, 1988, p. 69-88. | MR 985812 | Zbl 0648.46056

Glockner (P.)· Quantum stochastic differential equations on *-bigebras, Math. Proc. Cambridge Phil. Soc, 109, 1991, p. 571-595. | MR 1094755 | Zbl 0747.60060

Hudson (R.L.) and Parthasarathy (K.R.). 1. Quantum Ito's formula and stochastic evolutions, Comm. Math. Phys., 93, 1984, p. 301-303. | MR 745686 | Zbl 0546.60058

Mohari (A.). Quantum stochastic calculus with infinite degrees of freedom and its applications. PhD thesis, ISI Delhi 1992.

Mohari (A.) and Sinha (K.B.). Quantum stochastic flows with infinite degrees of freedom and countable state Markov processes. Sankhya (A), 52, 1990, p. 43-57. | MR 1176275 | Zbl 0719.60126

Parthasarathy (K.R.). An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel 1992. | MR 1164866 | Zbl pre06106787

Von Waldenfels (W.). Ito solution of the linear quantum stochastic differential equation describing light emission and absorption. Quantum Probability I, Springer LN 1055, 1984. | MR 782919 | Zbl 0532.60055