@article{RCP25_1992__43__147_0, author = {Majid, Shahn}, title = {Anyonic Groups}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, volume = {43}, year = {1992}, pages = {147-162}, language = {en}, url = {http://dml.mathdoc.fr/item/RCP25_1992__43__147_0} }
Majid, Shahn. Anyonic Groups. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 43 (1992) pp. 147-162. http://gdmltest.u-ga.fr/item/RCP25_1992__43__147_0/
[1] Superselection sectors with braid statistics and exchange algebras. Comm. Math. Phys. 125 (1989) 201-226. | MR 1016869 | Zbl 0682.46051
, , and .[2] Index of subfactors and statistics of quantum fields. Comm. Math. Phys. 126 (1989) 217. | MR 1027496 | Zbl 0682.46045
.[3] Braid statistics in local quantum theory. Rev. Math. Phys. 2 (1990) 251-353. | MR 1104414 | Zbl 0723.57002
and .[4] Braided compact closed categories with applications to low dimensional topology. Adv. Math. 77 (1989) 156-182. | MR 1020583 | Zbl 0679.57003
and .[5] Quasitriangular Hopf algebras and Yang-Baxter equations. Int. J. Modern Physics A 5 (1990) 1-91. | MR 1027945 | Zbl 0709.17009
.[6] Braided monoidal categories. Mathematics Reports 86008, Macquarie University (1986). | Zbl 0845.18005
and .[7] Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103 (1991) 547-597. | MR 1091619 | Zbl 0725.57007
and .[8] Reconstruction theorems and rational conformal field theories. Int. J. Mod. Phys. 6 (1991) 4359-4374. | MR 1126612 | Zbl 0728.17011
.[9] Braided groups and algebraic quantum field theories. Lett. Math. Phys. 22 (1991) 167-176. | MR 1129171 | Zbl 0745.16019
.[10] Examples of braided groups and braided matrices. J. Math. Phys. 32 (1991) 3246-3253. | MR 1137374 | Zbl 0821.16042
.[11] Transmutation theory and rank for quantum braided groups. Preprint, DAMTP/91-10 (1991). | MR 1188817 | Zbl 0781.17006
.[12] Cross products by braided groups and bosonization. To appear in J. Algebra. | MR 1257312 | Zbl 0807.16036
.[13] Fractional Statistics and Anyon Superconductivity. World. Sci. (1990). | MR 1081990
, ed.[14] Quantum field theories of vortices and anyons. Comm. Math. Phys. 121 (1989) 177. | MR 985396 | Zbl 0819.58045
and .[15] Hopf algebras acting on semiprime algebras. Contemp. Math. 43 (1985) 49-61. | MR 810642 | Zbl 0568.16009
.[16] Hopf Algebras. Benjamin (1969). | MR 252485 | Zbl 0194.32901
.[17] Quantum groups. In A. Gleason, ed., Proceedings of the ICM, pages 798-820, Rhode Island, AMS (1987). | MR 934283 | Zbl 0667.16003
.[18] Algebraic aspects of the quantum Yang-Baxter equation. Leningrad Math. J. 2 (1991) 801-828. | MR 1080202 | Zbl 0728.17012
.[19] Quantum groups and non - commutative geometry. Technical report, Centre de Recherches Math, Montreal (1988). | MR 1016381 | Zbl 0724.17006
.[20] Tannakian categories. Number 900 in Lec. Notes in Math. Springer (1982). | Zbl 0477.14004
and .[21] Representation-theoretic rank and double Hopf algebras. Comm. Algebra 18 (1990) 3705-3712. | MR 1068616 | Zbl 0715.16013
.[22] More examples of bicrossproduct and double cross product Hopf algebras. Isr. J. Math 72 (1990) 133-148. | MR 1098985 | Zbl 0725.17015
.[23] Doubles of quasitriangular Hopf algebras. Comm. Algebra 19 (1991) 3061-3073. | MR 1132774 | Zbl 0767.16014
.[24] Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130 (1990) 17-64. | MR 1045735 | Zbl 0694.16008
.[25] Hopf algebras for physics at the Planck scale. J. Classical and Quantum Gravity 5 (1988) 1587-1606. | MR 973262 | Zbl 0672.16009
.[26] Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang-Baxter equations. J. Fund. Analysis 95 (1991) 291-319. | MR 1092128 | Zbl 0741.46033
.[27] On the quasitriangular structures of a semisimple Hopf algebra. J. Algebra, 1991. | MR 1125700 | Zbl 0733.16015
.