@article{RCP25_1986__37__1_0, author = {Nicol\`o, Francesco}, title = {Some Applications of the Renormalization Group to the Scalar Field Theories}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, volume = {37}, year = {1986}, pages = {1-28}, language = {en}, url = {http://dml.mathdoc.fr/item/RCP25_1986__37__1_0} }
Nicolò, Francesco. Some Applications of the Renormalization Group to the Scalar Field Theories. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 37 (1986) pp. 1-28. http://gdmltest.u-ga.fr/item/RCP25_1986__37__1_0/
[1] Renormalization theory in four-dimensional scalar fields, I, Commun. Math. Phys. 100, 545 (1985) | MR 806252
,Renormalization theory in four-dimensional scalar fields, II, Commun. Math. Phys. 101, 247 (1985) | MR 810492
,[2] Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods Rev. of Modern Physics 57, 471 (1985) | MR 789582
[3] Perturbation theory and non-renormalizable scalar fields Commun. Math. Phys. 102, 549 (1986). | MR 824091 | Zbl 0595.58048
,[4] Construction of a non-trivial planar field theory with ultra-violet stable fixed point Commun. Math. Phys. 102, 139 (1985) | MR 817292
[5] Axioms for Euclidean Green's function I, Commun. Math. Phys. 31, 83 (1973) | MR 329492 | Zbl 0274.46047
.Axioms for Euclidean Green's function II, Commun. Math. Phys. 42, 281 (1975) | MR 376002 | Zbl 0303.46034
.[6]
(Lectures at the International School of Subnuclear Physics, Erice, Sicily, July 1977).[7] Local existence of the Borel transform in Euclidean Commun. Math. Phys. 82, 69 (1981). | MR 638514
,[8] A Lipatov bound for euclidean field theory Preprint Ecole Polytechnique n° A694.11.85 | MR 875302 | Zbl 1223.81138
, , ,[9] Renormalization and effective Lagrangians Nucl. Phys. B231, 269.