Some Applications of the Renormalization Group to the Scalar Field Theories
Nicolò, Francesco
Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 37 (1986), p. 1-28 / Harvested from Numdam
Publié le : 1986-01-01
@article{RCP25_1986__37__1_0,
     author = {Nicol\`o, Francesco},
     title = {Some Applications of the Renormalization Group to the Scalar Field Theories},
     journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25},
     volume = {37},
     year = {1986},
     pages = {1-28},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RCP25_1986__37__1_0}
}
Nicolò, Francesco. Some Applications of the Renormalization Group to the Scalar Field Theories. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 37 (1986) pp. 1-28. http://gdmltest.u-ga.fr/item/RCP25_1986__37__1_0/

[1] G. Gallavotti, F. Nicolò Renormalization theory in four-dimensional scalar fields, I, Commun. Math. Phys. 100, 545 (1985) | MR 806252

G. Gallavotti, F. Nicolò Renormalization theory in four-dimensional scalar fields, II, Commun. Math. Phys. 101, 247 (1985) | MR 810492

[2] G. Gallavotti Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods Rev. of Modern Physics 57, 471 (1985) | MR 789582

[3] G. Felder, G. Gallavotti Perturbation theory and non-renormalizable scalar fields Commun. Math. Phys. 102, 549 (1986). | MR 824091 | Zbl 0595.58048

[4] G. Felder Construction of a non-trivial planar field theory with ultra-violet stable fixed point Commun. Math. Phys. 102, 139 (1985) | MR 817292

[5] K. Osterwalder. R. Schrader Axioms for Euclidean Green's function I, Commun. Math. Phys. 31, 83 (1973) | MR 329492 | Zbl 0274.46047

K. Osterwalder. R. Schrader Axioms for Euclidean Green's function II, Commun. Math. Phys. 42, 281 (1975) | MR 376002 | Zbl 0303.46034

[6] G.'T Hooft (Lectures at the International School of Subnuclear Physics, Erice, Sicily, July 1977).

[7] C. De Calan, V. Rivasseau Local existence of the Borel transform in Euclidean Φ 4 4 Commun. Math. Phys. 82, 69 (1981). | MR 638514

[8] J. Magnen, F. Nicolò, V. Rivasseau, R. Seneor A Lipatov bound for Φ 4 4 euclidean field theory Preprint Ecole Polytechnique n° A694.11.85 | MR 875302 | Zbl 1223.81138

[9] J. Polchinski Renormalization and effective Lagrangians Nucl. Phys. B231, 269.