Équations cinétiques et changement d'échelle
Bardos, C.
Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 37 (1986), p. 1-17 / Harvested from Numdam
Publié le : 1986-01-01
@article{RCP25_1986__36__1_0,
     author = {Bardos, Claude},
     title = {\'Equations cin\'etiques et changement d'\'echelle},
     journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25},
     volume = {37},
     year = {1986},
     pages = {1-17},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/RCP25_1986__36__1_0}
}
Bardos, C. Équations cinétiques et changement d'échelle. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 37 (1986) pp. 1-17. http://gdmltest.u-ga.fr/item/RCP25_1986__36__1_0/

[1] C. Bardos et P. Degond : Global Existence for the Vlasov-Poisson Equation in 3 space variable with small initial Data. Annales de l'Institut Henri Poincaré. Analyse non linéaire. | Numdam | Zbl 0593.35076

[2] C. Bardos et F. Golse : Différents aspects de la notion d'entropie au niveau de l'Equation de Boltzmann et de Navier-Stokes. C.R. Acad. Sci. Paris, t. 299 Série I - 7 (1984). | MR 762726 | Zbl 0575.35073

[3] R. Caflisch : The Fluid dynamic limit of the non linear Boltzmann Equation. Comm. in Pure Appl. Math. 3 (1980) p. 651-666. | MR 586416 | Zbl 0424.76060

[4] S. Chapman et T.G. Cowling : The mathematical theory of non uniform gases. 3rd Ed. Cam. Univ. Press (1970). | MR 258399 | Zbl 0049.26102

[5] R. Di Perna : Convergence of Approximate Solutions to conservations laws. Arch. Rat. Mech. Anal. (1983). | MR 684413 | Zbl 0519.35054

[6] J. Ferziger et H. Kaper : Mathematical Theory of Transport Processes in Gases. (North Holland Amsterdam 1972).

[7] H. Grad : Asymptotic equivalence of the Navier-Stokes and non linear Boltzmann Equation in Proc. Symp. Appl. XVII. Application of non linear P.D.E. in Mathematics, p. 154-183. | MR 184507 | Zbl 0144.48203

[8] K. Hamdache : Quelques résultats pour l'Equation de Boltzmann. Note C.R. Acad. Sci. Paris. | Zbl 0575.76077

[9] R. Ilner et M. Shinbrot : The Boltzmann Equation global existence in an infinite vacuum. A paraître dans Com. Math. Phys. | Zbl 0599.76088

[10] S. Klainerman : Long time behaviour of the solution to non linear equations, Arch. Rat. Mech. and Anal. Vol. 78 (1982), p. 73-98. | Zbl 0502.35015

[11] P. Lax : Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock waves. S.I.A.M. Regional Conference Serie in Math. II 1973. | MR 350216 | Zbl 0268.35062

[12] T. Nishida : Fluid dynamical limit of the non linear Boltzmann Equation to the level of the compressible Euler Equation. Comm. Math. Phys. 61 (1978), p. 119-148. | MR 503305 | Zbl 0381.76060