The Generalized Three Circle - And Other Convexity Theorems with Application to the Construction of Envelopes of Holomorphy
Borchers, H. J.
Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 23 (1976), p. 42-80 / Harvested from Numdam
Publié le : 1976-01-01
@article{RCP25_1976__23__42_0,
     author = {Borchers, H. J.},
     title = {The Generalized Three Circle - And Other Convexity Theorems with Application to the Construction of Envelopes of Holomorphy},
     journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25},
     volume = {23},
     year = {1976},
     pages = {42-80},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RCP25_1976__23__42_0}
}
Borchers, H. J. The Generalized Three Circle - And Other Convexity Theorems with Application to the Construction of Envelopes of Holomorphy. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 23 (1976) pp. 42-80. http://gdmltest.u-ga.fr/item/RCP25_1976__23__42_0/

[1] Borchers, H.J. and J. Yngvason : Necessary and Sufficient Conditions for Integral Representations of Wightman Functionals at Schwinger Points. Commun. Math. Phys. 47, 197 (1976). | MR 479134 | Zbl 0319.46060

[2] Bremermann, H. : Über die Äquivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete im Raum n komplexer Veränderlicher. Math. Ann. 128, 63 (1954) | MR 71088 | Zbl 0056.07801

[3] Bremermann, H. : Complex Convexity. Trans. Amer. Math. Soc. 82, 17 (1956). | MR 79100 | Zbl 0070.30402

[4] Bremermann, H. : On the Conjecture of the Equivalence of Pluri-Subharmonic Functions and the Hartogs Functions. Math. Ann. 131, 76 (1956). | MR 77644 | Zbl 0070.07603

[5] Grauert, H. und F. Fritsche : Einführung in die Funktionentheorie mehrerer Veränderlicher. Hochschultext Springer ; Berlin, Heidelberg, New York (1974) . | MR 372232 | Zbl 0285.32001

[6] Hörmander, L. : An Introduction to Complex Analysis in Several Variables. D. van Nostrand ; Princeton N.J. (1966). | MR 203075 | Zbl 0138.06203

[7] Meschkowsk , H. : Hilbertsche Räume mit Kernfunktionen. Springer ; Berlin, Göttingen, Heidelberg (1962) | MR 140912 | Zbl 0103.08802

[8] Pietsch, A. : Nukleare lokalkonvexe Räume. Akademie-Verlag; Berlin (1969). | Zbl 0184.14602