Relativistic Wave Equations
Seiler, R.
Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 19 (1973), p. 1-24 / Harvested from Numdam
Publié le : 1973-01-01
@article{RCP25_1973__18__A4_0,
     author = {Seiler, R.},
     title = {Relativistic Wave Equations},
     journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25},
     volume = {19},
     year = {1973},
     pages = {1-24},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RCP25_1973__18__A4_0}
}
Seiler, R. Relativistic Wave Equations. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 19 (1973) pp. 1-24. http://gdmltest.u-ga.fr/item/RCP25_1973__18__A4_0/

1) B. Klaiber Lectures in Theoretical Physics, Boulder 1967

2) A.S. Wightman Proceedings of Fifth Coral Gables Conference 1968 p. 291

3) A.S. Wightman Relativistic Wave Equations as Singular Hyperbolic Systems, Preprint. 1972. | MR 342075 | Zbl 0261.35054

4) A. Einstein Phys. Z. 18, 121 (1917)

A. Einstein Ann. d. Phys. 17, 132 (1905) | JFM 36.0883.01

5) E. Schrödinger Ann. Phys. 81, 109 (1926) reprinted in Abhandlungen zur Wellenmechanik, | JFM 54.0963.01

E. Schrödinger Dokumente der Naturwissenschaft Bd. 3, Leipzig 1927.

E. Schrödinger Dokumente der Naturwissenschaft Bd. 3, Stuttgart 1963.

6)G. Wentzel, H.A. Kramers and L. Brillouin (1926),

for a review, W. Pauli, Handbuch der Physik 2, Band V, Teil 1, Springer 1958

7) O. Klein Z. Phys. 37, 895 (1926), | JFM 52.0970.09

O. Klein Z. Phys. 41, 407 (1927) | JFM 53.0871.01

W. Gordon Z. Phys. 40, 117 (1926) | JFM 52.0979.06

8) L. Foldy and S. Wouthuysen, Phys. Rev. 78, 29 (1950)

9) P.A.M. Dirac Proc. Roy. Soc. (London) A 117, 610 (1928) | JFM 54.0973.01

P.A.M. Dirac Proc. Roy. Soc. (London) A 118, 352 (1928)

P.A.M. Dirac For a detailed account of the history of the Dirac equation we refer to A. S. Wightman in Aspects of Quantum Theory, Edited by A. Salam and E.P. Wigner (Cambridge University Press, 1972).

10) P.A.M. Dirac Proc. Roy. Soc. (London) A 126, 360 (1930) | JFM 56.0751.02

P.A.M. Dirac Proc. Cambridge Phil. Soc. 26, 361 (1931)

11) M. Fierz Helv. Phys. Acta, 12, 3 (1939) | JFM 65.1530.03 | Zbl 0020.18904

12) W. Pauli Phys. Rev. 58, 716 (1940) | JFM 66.1177.01 | Zbl 0027.18904

13) M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A 173, 211 (1939) | JFM 65.1532.01 | Zbl 0023.43004

14) S. Kusaka and J. Weinberg, unpublished; J. Weinberg Thesis, unpublished (1943)

15) G. Velo and D. Zwanziger, Phys. Rev. 186, 1337 (1969) , 188, 2218 (1969)

16) K. Jörgens Math. Ann. 138, 179 (1959)

C. S. Morawetz and W. A. Strauss, Comm. Pure Appl. Math. 25, 1 (1972) | MR 303097 | Zbl 0228.35055

17) John M. Chadam J. Math. Phys. 13, 597 (1972) | Zbl 0228.35075

John M. Chadam Indiana University Preprint, Bloomington, Indiana (1972)

18) S. Weinberg Phys. Rev. 133, 131-318 (1964)

H. Joos Fortschr. Physik 10, 65 (1962) | Zbl 0131.44002

19) P. Moussa and R. Stora, International School of Elementary Particle Physics, Herceg-Novi, Yugoslavia (1966)

20) A. S. Glass Princeton Thesis 1971, unpublished

21) A. Capri Jour. Math. Phys. 10, 575 (1969)

22) For a most complet review on relativistic wave equations without interaction see ref. 20)

23) see ref. 2) and ref. 30)

P. Minkowski and R. Seiler, Phys. Rev. D 4, 359 (1971) | MR 342072

25) J. Bellissard and R. Seiler, to be published in Lettere al Nouovo Cimento

26) A. S. Wightman ref. 9) p. 107

27) J. Bellissard Université de Provence-Centres Saint-Charles, Thèse; unpublished

28) J. Leray and Y. Ohya Systèmes lineaires hyperboliques non stricts Colloques CBM Louvain (1964) ; | Zbl 0135.14804

J. Leray and Y. Ohya Reprint in Battelle Rencontres on Hyperbolic Equations and Waves, Seattle 1968

29) R. Seiler, in preparation

30) B. Schroer, A. Swieca and R. Seiler, Phys. Rev. D 2, 2927 (1970) | Zbl 1227.81201

31) Spin zero particle in external field, ref. 30).

32) Spin 1/2 particle in external field R. Seiler, Comm. Math. Phys. 25, 127 (1972)

33) Existence already follows from classical theorems by Scale resp. Scale and Stinespring

34) There is a close connection between the kernel I(x,y) comming up in the formal expression for the S-matrix in perturbation theory S= in 0|S|0 in :expdxdyϕ in + (x)I(x,y)ϕ in (y): and the fundamental solution S R (x,y;A) resp. S A (x,y;A) of the wave equation (11). G=G 0 +G 0 IG 0 where G 0 denotes the fundamental solution of the free equation with Feynman boundary conditions. Then G is a solution of the equation G=G 0 -iG 0 ¬AG On the other hand S R resp. S A are solutions of the Yang-Feldman equation (12) S R A (x,y;A)=S R A 0 (x-y)-idzS R A 0 (x-z)¬A(z)S R A (z,y;A).

35) A. S. Wightman, private communication