@article{RCP25_1972__14__A3_0, author = {Thirring, Walter}, title = {Free Energy of Gravitating Fermions}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, volume = {14}, year = {1972}, pages = {1-26}, language = {en}, url = {http://dml.mathdoc.fr/item/RCP25_1972__14__A3_0} }
Thirring, Walter. Free Energy of Gravitating Fermions. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 14 (1972) pp. 1-26. http://gdmltest.u-ga.fr/item/RCP25_1972__14__A3_0/
1) Statistical Physics, Phase transitions and Superfluidity, 1966 Brandeis University Suramer School in Theoretical Physics, lecture notes ;
in8 (1967) 423 | MR 2408896 | Zbl 0948.81665
and , J.Math.Phys.2) 22. (1969) 631
and , Phys. Rev. Letter3) 10 (1969) 806.
, J.Math.Phys.4) 235 (1970) 339;
, Z. Phys.63 (1971).
and , Annals of Physics5) | MR 1552579
and , CEEN preprint TH. 1338 (1971).6) A typical "neutron star" of particles at a temperature of 5 MeV and enclosed into a sphere of 100 km radius corresponds to with , , and . Since , and are of order unity (if measured in their natural units) and since is sufficiently large, we will describe the above "neutron star" by the limit . For , and km we would have reached the same accuracy for .
7) Perturbation theory for linear operators, Berlin, Springer 1966. There the infinite volume case is studied, however, the result also holds for finite volume. | Zbl 0836.47009
,8) Analyticity of the partition function for finite quantum Systems, CERN preprint TH. 1299 (1971). | MR 303887 | Zbl 0218.47017
,9) I, Paris, Gauthier-Villars 1969. | Zbl 0326.22001
, Eléments d'analyse, Tome10) 10 (1969) 1123. Again this estimate for infinité volume is a fortiori also valid for finite volume. | MR 246593
, J.Math.Phys.11) | MR 289084 | Zbl 0177.57301
, Statistical mechanics - rigorous results, New York, Benjamin 1961.12) 32 (1966) 933. | MR 207351
, Physica13) 8 (1968) 26. | MR 225552 | Zbl 0155.32701
, Commun.Math.Phys.