@article{PMIHES_2010__112__101_0, author = {Deligne, Pierre}, title = {Le groupe fondamental unipotent motivique de $\mathbb {G}\_{m}-\mu \_{N}$ , pour N=2,3,4,6 ou 8}, journal = {Publications Math\'ematiques de l'IH\'ES}, volume = {112}, year = {2010}, pages = {101-141}, doi = {10.1007/s10240-010-0027-6}, mrnumber = {2737978}, zbl = {1218.14016}, language = {fr}, url = {http://dml.mathdoc.fr/item/PMIHES_2010__112__101_0} }
Deligne, Pierre. Le groupe fondamental unipotent motivique de $\mathbb {G}_{m}-\mu _{N}$ , pour N=2,3,4,6 ou 8. Publications Mathématiques de l'IHÉS, Tome 112 (2010) pp. 101-141. doi : 10.1007/s10240-010-0027-6. http://gdmltest.u-ga.fr/item/PMIHES_2010__112__101_0/
1. Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. ENS 38 (2005), p. 1-56 | Numdam | MR 2136480 | Zbl 1084.14024
, ,2. The dihedral Lie algebra and Galois symmetries of , Duke Math. J. 110 (2001), p. 397-487 | MR 1869113 | Zbl 1113.14020
,3. The Galois representations arising from ℙ1−{0,1,∞} and Tate twists of even degree, in : Galois Groups over ℚ, MSRI Publ., vol. 16, pp. 299–313. | MR 1012169 | Zbl 0706.14018
,4. Doubles mélanges des polylogarithmes multiples aux racines de l’unité, Publ. Math. IHES 95 (2002), p. 185-231 | Numdam | MR 1953193 | Zbl 1050.11066
,5. A natural ring basis for the shuffle algebra and an application to group schemes, J. Algorithms 58 (1979), p. 432-454 | MR 540649 | Zbl 0409.16011
,6. Free Lie Algebras, (1993), Oxford University Press, London | MR 1231799 | Zbl 0798.17001
,