We extend the methods of Wiles and of Taylor and Wiles from GL2 to higher rank unitary groups and establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge-Tate numbers), minimally ramified, l-adic lifts of certain automorphic mod l Galois representations of any dimension. We also make a conjecture about the structure of mod l automorphic forms on definite unitary groups, which would generalise a lemma of Ihara for GL2. Following Wiles' method we show that this conjecture implies that our automorphy lifting theorem could be extended to cover lifts that are not minimally ramified.
@article{PMIHES_2008__108__1_0, author = {Clozel, Laurent and Harris, Michael and Taylor, Richard}, title = {Automorphy for some l-adic lifts of automorphic mod l Galois representations}, journal = {Publications Math\'ematiques de l'IH\'ES}, volume = {108}, year = {2008}, pages = {1-181}, doi = {10.1007/s10240-008-0016-1}, mrnumber = {2470687}, zbl = {1169.11020}, language = {en}, url = {http://dml.mathdoc.fr/item/PMIHES_2008__108__1_0} }
Clozel, Laurent; Harris, Michael; Taylor, Richard. Automorphy for some l-adic lifts of automorphic mod l Galois representations. Publications Mathématiques de l'IHÉS, Tome 108 (2008) pp. 1-181. doi : 10.1007/s10240-008-0016-1. http://gdmltest.u-ga.fr/item/PMIHES_2008__108__1_0/
1. Simple Algebras, Base Change and the Advanced Theory of the Trace Formula, Ann. Math. Stud. 120 (1989), Princeton University Press, Princeton, NJ | MR 1007299 | Zbl 0682.10022
, ,2. Induced representations of reductive -adic groups. I, Ann. Sci. Éc. Norm. Supér., IV. Sér. 10 (1977), p. 441-472 | Numdam | MR 579172 | Zbl 0412.22015
, ,3. Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, in: p-adic Monodromy and the Birch and Swinnerton-Dyer Conjecture, Contemp. Math. 165 (1994), Amer. Math. Soc., Providence, RI | Zbl 0812.11036
,4. On the cohomology of Kottwitz's arithmetic varieties, Duke Math. J. 72 (1993), p. 757-795 | MR 1253624 | Zbl 0974.11019
,5. Changement de base pour les représentations cohomologiques des certaines groupes unitaires, appendix to “Cohomologie, stabilisation et changement de base”, Astérisque 257 (1999), p. 120-132 | MR 1695940
, ,6. Cohomology of finite groups of Lie type I, Publ. Math., Inst. Hautes Étud. Sci. 45 (1975), p. 169-191 | Numdam | MR 399283 | Zbl 0412.20044
, , ,7. Methods of Representation Theory I, (1981), Wiley Interscience, New York | MR 632548 | Zbl 0616.20001
, ,8. H. Darmon, F. Diamond, and R. Taylor, Fermat's last theorem, in Current Developments in Mathematics, International Press, Cambridge, MA, 1994. | MR 1474977 | Zbl 0877.11035
9. The Taylor-Wiles construction and multiplicity one, Invent. Math. 128 (1997), p. 379-391 | MR 1440309 | Zbl 0916.11037
,10. M. Dickinson, A criterion for existence of a universal deformation ring, appendix to “Deformations of Galois representations” by F. Gouvea, in Arithmetic Algebraic Geometry (Park City, UT, 1999), Amer. Math. Soc., Providence, RI, 2001.
11. Nonoptimal levels of mod l modular representations, Invent. Math. 115 (1994), p. 435-462 | MR 1262939 | Zbl 0847.11025
, ,12. Construction de représentations p-adiques, Ann. Sci. Éc. Norm. Supér., IV. Sér. 15 (1982), p. 547-608 | Numdam | MR 707328 | Zbl 0579.14037
, ,13. The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. Math. Stud. 151 (2001), Princeton University Press, Princeton, NJ | MR 1876802 | Zbl 1036.11027
, ,14. M. Harris, N. Shepherd-Barron, and R. Taylor, A family of hypersurfaces and potential automorphy, to appear in Ann. Math.
15. Y. Ihara, On modular curves over finite fields, in Discrete Subgroups of Lie Groups and Applications to Moduli, Oxford University Press, Bombay, 1975. | MR 399105 | Zbl 0343.14007
16. On Euler products and the classification of automorphic forms I, Amer. J. Math. 103 (1981), p. 499-558 | MR 618323 | Zbl 0491.10020
, ,17. On Euler products and the classification of automorphic forms II, Amer. J. Math. 103 (1981), p. 777-815 | MR 623137 | Zbl 0491.10020
, ,18. Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), p. 199-214 | MR 620708 | Zbl 0443.22013
, , ,19. Module universel en caractéristique l>0 associé à un caractère de l’algèbre de Hecke de GL(n) sur un corps p-adique, avec , J. Algebra 213 (1999), p. 662-686 | MR 1673473 | Zbl 0920.22010
,20. H. Lenstra, Complete intersections and Gorenstein rings, in Elliptic Curves, Modular Forms and Fermat's Last Theorem, International Press, Cambridge, MA, 1995. | MR 1363497 | Zbl 0860.13012
21. W. R. Mann, Local level-raising for GL n , PhD thesis, Harvard University (2001). | MR 2702054
22. W. R. Mann, Local level-raising on GL(n), partial preprint. | MR 2702054
23. Algèbres de Hecke quasi-ordinaires universelles, Ann. Sci. Éc. Norm. Supér., IV. Sér. 37 (2004), p. 171-222 | Numdam | MR 2061780 | Zbl 1196.11074
,24. B. Mazur, An introduction to the deformation theory of Galois representations, in Modular Forms and Fermat's Last Theorem (Boston, MA, 1995), Springer, New York, 1997. | MR 1638481 | Zbl 0901.11015
25. Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér., IV. Sér. 22 (1989), p. 605-674 | Numdam | MR 1026752 | Zbl 0696.10023
, ,26. On subgroups of , Invent. Math. 88 (1987), p. 257-275 | MR 880952 | Zbl 0632.20030
,27. Cohomology of Number Fields, Grundl. Math. Wiss. 323 (1989), Springer, Berlin | MR 1737196 | Zbl 0948.11001
, , ,28. On a variation of Mazur's deformation functor, Compos. Math. 87 (1993), p. 269-286 | Numdam | MR 1227448 | Zbl 0910.11023
,29. Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur, Ann. Math. 156 (2002), p. 115-154 | MR 1935843 | Zbl 1076.11035
,30. K. Ribet, Congruence relations between modular forms, in Proceedings of the Warsaw ICM, PWN, Warsaw, 1984. | MR 804706 | Zbl 0575.10024
31. Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. Éc. Norm. Supér., IV. Sér. 31 (1998), p. 361-413 | Numdam | MR 1621409 | Zbl 0903.22009
,32. Abelian l-adic Representations and Elliptic Curves, (1968), Benjamin, New York, Amsterdam | MR 263823 | Zbl 0186.25701
,33. Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math. 116 (1994), p. 513-530 | MR 1253203 | Zbl 0816.20014
,34. On an explicit formula for class-1 “Whittaker functions” on GL n over P-adic fields, Proc. Japan Acad. 52 (1976), p. 180-182 | MR 407208 | Zbl 0387.43002
,35. Base change and a problem of Serre, Duke Math. J. 107 (2001), p. 15-25 | MR 1815248 | Zbl 1016.11017
, ,36. J. Tate, Number theoretic background, in A. Borel and W. Casselman Automorphic Forms, Representations and L-Functions, Proc. Symp. Pure Math., vol. 33(2), Amer. Math. Soc., Providence, RI, 1979. | MR 546607 | Zbl 0422.12007
37. R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations. II, this volume. | Numdam | Zbl 1169.11021
38. Deformations of Galois Representations and Hecke Algebras, (2002), Mehta Institute, New Dehli | Zbl 1009.11033
,39. Ring-theoretic properties of certain Hecke algebras, Ann. Math. 141 (1995), p. 553-572 | MR 1333036 | Zbl 0823.11030
, ,40. Représentations l-modulaires d’un groupe réductif p-adique avec , Progr. Math. 137 (1996), Birkhäuser, Boston, MA | Zbl 0859.22001
,41. Induced R-representations of p-adic reductive groups, Sel. Math., New Ser. 4 (1998), p. 549-623 | Zbl 0943.22017
,42. Modular elliptic curves and Fermat's last theorem, Ann. Math. 141 (1995), p. 443-551 | MR 1333035 | Zbl 0823.11029
,