@article{PMIHES_2008__107__1_0, author = {Chen, X. X. and Tian, G.}, title = {Geometry of K\"ahler metrics and foliations by holomorphic discs}, journal = {Publications Math\'ematiques de l'IH\'ES}, volume = {108}, year = {2008}, pages = {1-107}, doi = {10.1007/s10240-008-0013-4}, mrnumber = {2434691}, zbl = {1182.32009}, language = {en}, url = {http://dml.mathdoc.fr/item/PMIHES_2008__107__1_0} }
Chen, X. X.; Tian, G. Geometry of Kähler metrics and foliations by holomorphic discs. Publications Mathématiques de l'IHÉS, Tome 108 (2008) pp. 1-107. doi : 10.1007/s10240-008-0013-4. http://gdmltest.u-ga.fr/item/PMIHES_2008__107__1_0/
[1] Uniqueness of Einstein Kähler metrics modulo connected group actions. Algebr. Geom., Sendai, 1985, Adv. Stud. Pure Math. 10: pp. 11-40 | MR 946233 | Zbl 0641.53065
, (1987)[2] The Dirichlet problem for the complex Monge-Ampere operator. Invent. Math. 37: pp. 1-44 | MR 445006 | Zbl 0315.31007
, (1976)[3] An extension of e. Hopf's maximum principle with an application to Riemannian geometry. Duke Math. J. 25: pp. 45-56 | MR 92069 | Zbl 0079.11801
(1957)[4] Extremal Kähler metrics. Seminar on Differential Geometry. Princeton University Press, Princeton, pp. 259-290 | MR 645743 | Zbl 0487.53057
(1982)[5] Extremal Kähler metrics. II. Differential Geometry and Complex Analysis. Springer, Berlin, pp. 95-114 | MR 780039 | Zbl 0574.58006
(1985)[6] The space of Kähler metrics. II. J. Differ. Geom. 61: pp. 173-193 | MR 1969662 | Zbl 1067.58010
, (2002)[7] Extremal Hermitian metrics in Riemann surface. Int. Math. Res. Not. 15: pp. 781-797 | MR 1639555 | Zbl 0955.30032
(1998)[8] On the lower bound of the Mabuchi energy and its application. Int. Math. Res. Not. 2000: pp. 607-623 | MR 1772078 | Zbl 0980.58007
(2000)[9] Space of Kähler metrics. J. Differ. Geom. 56: pp. 189-234 | MR 1863016 | Zbl 1041.58003
(2000)[10] Holomorphic spheres in loop groups and Bott periodicity. Surveys in Differential Geometry. Int. Press, Somerville, MA, pp. 83-106 | MR 1919423 | Zbl 1064.58010
, , (2000)[11] Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar. Amer. Math. Soc. Transl. 196: pp. 13-33 | MR 1736211 | Zbl 0972.53025
(1999)[12] Holomorphic discs and the complex Monge-Ampère equation. J. Sympletic Geom. 1: pp. 171-196 | MR 1959581 | Zbl 1035.53102
(2001)[13] Scalar curvature and projective embeddings, II. Q. J. Math. 56: pp. 345-356 | MR 2161248 | Zbl 1159.32012
(2005)[14] Analytic discs with boundaries in a maximal real submanifolds of . Ann. Inst. Fourier 37: pp. 1-44 | Numdam | MR 894560 | Zbl 0583.32038
(1987)[15] Remarks on extremal Kähler metrics on ruled manifolds. Nagoya Math. J. 126: pp. 89-101 | MR 1171594 | Zbl 0772.53044
(1992)[16] Perturbation by analytic discs along maximal real submanifolds of . Math. Z. 217: pp. 287-316 | MR 1296398 | Zbl 0806.58044
(1994)[17] The Dirichlet problem for nonlinear second-order elliptic equation I, Monge-Ampere equation. Comm. Pure Appl. Math. 37: pp. 369-402 | MR 739925 | Zbl 0598.35047
, , (1984)[18] The Dirichlet problem for nonlinear second-order elliptic equation II. Complex Monge-Ampere equation. Comm. Pure Appl. Math. 38: pp. 209-252 | MR 780073 | Zbl 0598.35048
, , , (1985)[19] Solving the degenerate Monge-Ampere equation with one concentrated singularity. Math. Ann. 263: pp. 515-532 | MR 707246 | Zbl 0531.35020
(1983)[20] Some symplectic geometry on compact Kähler manifolds I. Osaka J. Math. 24: pp. 227-252 | MR 909015 | Zbl 0645.53038
(1987)[21] Riemann-Hilbert problem and application to the perturbation theory of analytic discs. Kyungpook Math. J. 35: pp. 38-75 | MR 1345070 | Zbl 0853.32017
(1995)[22] Fredhom theory of holomorphic discs under the perturbation theory of boundary conditions. Math. Z. 222: pp. 505-520 | MR 1400206 | Zbl 0863.53024
(1996)[23] On the inequality . Pac. J. Math. 7: pp. 1641-1647 | MR 98239 | Zbl 0083.09402
(1957)[24] Algebraic and analytic K-stability, preprint, math/0404223.
and ,[25] Complex Monge-Ampère equations and sympletic manifolds. Amer. J. Math. 114: pp. 495-550 | MR 1165352 | Zbl 0790.32017
(1992)[26] On Calabi's conjecture for complex surfaces with positive first Chern class. Invent. Math. 101: pp. 101-172 | MR 1055713 | Zbl 0716.32019
(1990)[27] Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130: pp. 1-39 | MR 1471884 | Zbl 0892.53027
(1997)[28] Canonical Metrics in Kähler Geometry (Notes taken by Meike Akveld). Birkhäuser, Basel | MR 1787650 | Zbl 0978.53002
(2000)[29] Bott-Chern forms and geometric stability. Discrete Contin. Dyn. Syst. 6: pp. 211-220 | MR 1739924 | Zbl 1022.32009
(2000)[30] A new holomorphic invariant and uniqueness of Kähler-Ricci solitons. Comment. Math. Helv. 77: pp. 297-325 | MR 1915043 | Zbl 1036.53053
, (2002)[31] Systems of Singular Integral Equations. Groningen, Nordhoff
(1967)[32] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation, I*. Comm. Pure Appl. Math. 31: pp. 339-441 | MR 480350 | Zbl 0369.53059
(1978)