Periodic orbits and chain-transitive sets of C 1 -diffeomorphisms
Crovisier, Sylvain
Publications Mathématiques de l'IHÉS, Tome 104 (2006), p. 87-141 / Harvested from Numdam

We prove that the chain-transitive sets of C 1 -generic diffeomorphisms are approximated in the Hausdorff topology by periodic orbits. This implies that the homoclinic classes are dense among the chain-recurrence classes. This result is a consequence of a global connecting lemma, which allows to build by a C 1 -perturbation an orbit connecting several prescribed points. One deduces a weak shadowing property satisfied by C 1 -generic diffeomorphisms: any pseudo-orbit is approximated in the Hausdorff topology by a finite segment of a genuine orbit. As a consequence, we obtain a criterion for proving the tolerance stability conjecture in Diff 1 (M).

@article{PMIHES_2006__104__87_0,
     author = {Crovisier, Sylvain},
     title = {Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     volume = {104},
     year = {2006},
     pages = {87-141},
     doi = {10.1007/s10240-006-0002-4},
     zbl = {pre05117095},
     language = {en},
     url = {http://dml.mathdoc.fr/item/PMIHES_2006__104__87_0}
}
Crovisier, Sylvain. Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms. Publications Mathématiques de l'IHÉS, Tome 104 (2006) pp. 87-141. doi : 10.1007/s10240-006-0002-4. http://gdmltest.u-ga.fr/item/PMIHES_2006__104__87_0/

1. F. Abdenur, C. Bonatti, S. Crovisier, Global dominated splittings and the C1 Newhouse phenomenon, Proc. Amer. Math. Soc., 134 (2006), 2229-2237 | MR 2213695 | Zbl 1088.37013

2. F. Abdenur, C. Bonatti, S. Crovisier, L. Díaz, Generic diffeomorphisms on compact surfaces, Fundam. Math., 187 (2005), 127-159 | MR 2214876 | Zbl 1089.37032

3. F. Abdenur and L. Díaz, Pseudo-orbit shadowing in the C1-topology, to appear in Discrete Cont. Dyn. Syst. | MR 2257429 | Zbl 1132.37014

4. R. Abraham, S. Smale, Nongenericity of Ω-stability, Global analysis I, Proc. Symp. Pure Math. AMS, 14 (1970), 5-8 | Zbl 0215.25102

5. M.-C. Arnaud, Création de connexions en topologie C1 , Ergodic Theory Dyn. Syst., 21 (2001), 339-381 | MR 1827109 | Zbl 0997.37007

6. M.-C. Arnaud, Approximation des ensembles ω-limites des difféomorphismes par des orbites périodiques, Ann. Sci. Éc. Norm. Supér., IV. Sér., 36 (2003), 173-190 | Numdam | Zbl 1024.37011

7. M.-C. Arnaud, C. Bonatti, S. Crovisier, Dynamiques symplectiques génériques, Ergodic Theory Dyn. Syst., 25 (2005), 1401-1436 | MR 2173426 | Zbl 1084.37017

8. C. Bonatti, S. Crovisier, Récurrence et généricité, Invent. Math., 158 (2004), 33-104 | MR 2090361 | Zbl 1071.37015

9. C. Bonatti, L. Díaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. Math., 143 (1996), 357-396 | MR 1381990 | Zbl 0852.58066

10. C. Bonatti, L. Díaz, On maximal transitive sets of generic diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci., 96 (2003), 171-197 | Numdam | MR 1985032 | Zbl 1032.37011

11. C. Bonatti, L. Díaz, E. Pujals, A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicicity or infinitely many sinks or sources, Ann. Math., 158 (2003), 355-418 | MR 2018925 | Zbl 1049.37011

12. C. Bonatti, L. Díaz, G. Turcat, Pas de “shadowing lemma” pour des dynamiques partiellement hyperboliques, C. R. Acad. Sci. Paris, 330 (2000), 587-592 | Zbl 0973.37016

13. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer, Berlin - New York (1975) | MR 442989 | Zbl 0308.28010

14. C. Conley, Isolated invariant sets and Morse index, AMS, Providence (1978) | MR 511133 | Zbl 0397.34056

15. C. Carballo, C. Morales, M.-J. Pacífico, Homoclinic classes for C1-generic vector fields, Ergodic Theory Dyn. Syst., 23 (2003), 1-13 | MR 1972228 | Zbl 1047.37009

16. R. Corless, S. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl., 189 (1995), 409-423 | MR 1312053 | Zbl 0821.58036

17. W. Melo, Structural stability of diffeomorphisms on two-manifolds, Invent. Math., 21 (1973), 233-246 | MR 339277 | Zbl 0291.58011

18. G. Gan, L. Wen, Heteroclinic cycles and homoclinic closures for generic diffeomorphisms, J. Dyn. Differ. Equations, 15 (2003), 451-471 | MR 2046726 | Zbl 1034.37013

19. S. Gonchenko, L. Shilńikov, D. Turaev, Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits, Chaos, 6 (1996), 15-31 | MR 1376892 | Zbl 1055.37578

20. S. Hayashi, Connecting invariant manifolds and the solution of the C1-stability and Ω-stability conjectures for flows, Ann. Math., 145 (1997), 81-137 | Zbl 0871.58067

21. I. Kupka, Contribution à la théorie des champs génériques, Contrib. Differ. Equ., 2 (1963), 457-484 | MR 165536 | Zbl 0149.41002

22. R. Mañé, Contributions to the stability conjecture, Topology, 17 (1978), 383-396 | MR 516217 | Zbl 0405.58035

23. R. Mañé, An ergodic closing lemma, Ann. Math., 116 (1982), 503-540 | MR 678479 | Zbl 0511.58029

24. R. Mañé, A proof of the C1 stability conjecture, Publ. Math., Inst. Hautes Étud. Sci., 66 (1988), 161-210 | Numdam | MR 932138 | Zbl 0678.58022

25. M. Mazur, Tolerance stability conjecture revisited, Topology Appl., 131 (2003), 33-38 | MR 1982812 | Zbl 1024.37012

26. S. Newhouse, Hyperbolic limit sets, Trans. Amer. Math. Soc., 167 (1972), 125-150 | MR 295388 | Zbl 0239.58009

27. S. Newhouse, Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18 | MR 339291 | Zbl 0275.58016

28. S. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci., 50 (1979), 101-151 | Numdam | MR 556584 | Zbl 0445.58022

29. K. Odani, Generic homeomorphisms have the pseudo-orbit tracing property, Proc. Amer. Math. Soc., 110 (1990), 281-284 | MR 1009998 | Zbl 0713.58025

30. J. Palis, On the C1 Ω-stability conjecture, Publ. Math., Inst. Hautes Étud. Sci., 66 (1988), 211-215 | Numdam | Zbl 0648.58019

31. J. Palis, S. Smale, Structural stability theorem, Proc. Amer. Math. Soc. Symp. Pure Math., 14 (1970), 223-232 | MR 267603 | Zbl 0214.50702

32. J. Palis and F. Takens, Hyperbolicity & sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993. | MR 1237641 | Zbl 0790.58014

33. J. Palis, M. Viana, High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. Math., 140 (1994), 207-250 | MR 1289496 | Zbl 0817.58004

34. S. Pilyugin, Shadowing in dynamical systems, Lect. Notes Math., vol. 1706, Springer, Berlin, 1999. | MR 1727170 | Zbl 0954.37014

35. C. Pugh, The closing lemma, Amer. J. Math., 89 (1967), 956-1009 | MR 226669 | Zbl 0167.21803

36. C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math., 89 (1967), 1010-1021 | MR 226670 | Zbl 0167.21804

37. C. Pugh, C. Robinson, The C1-closing lemma, including hamiltonians, Ergodic Theory Dyn. Syst., 3 (1983), 261-314 | MR 742228 | Zbl 0548.58012

38. J. Robbin, A structural stability theorem, Ann. Math., 94 (1971), 447-493 | MR 287580 | Zbl 0224.58005

39. C. Robinson, Generic properties of conservative systems, Amer. J. Math., 92 (1970), 562-603 | MR 273640 | Zbl 0212.56502

40. C. Robinson, Cr - structural stability implies Kupka-Smale, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 443-449, Academic Press, New York, 1973. | MR 334282 | Zbl 0275.58014

41. C. Robinson, Structural stability of C1-diffeomorphisms, J. Differ. Equ., 22 (1976), 28-73 | MR 474411 | Zbl 0343.58009

42. C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mt. J. Math., 7 (1977), 425-437 | MR 494300 | Zbl 0375.58016

43. N. Romero, Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dyn. Syst., 15 (1995), 735-757 | MR 1346398 | Zbl 0833.58020

44. K. Sakai, Diffeomorphisms with weak shadowing, Fundam. Math., 168 (2001), 57-75 | MR 1835482 | Zbl 0968.37009

45. M. Shub, Stability and genericity for diffeomorphisms, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 493-514, Academic Press, New York, 1973. | MR 331431 | Zbl 0289.58013

46. M. Shub, Topologically transitive diffeomorphisms of T4, Lect. Notes Math., vol. 206, pp. 39-40, Springer, Berlin-New York, 1971.

47. C. Simon, A 3-dimensional Abraham-Smale example, Proc. Amer. Math. Soc., 34 (1972), 629-630 | MR 295391 | Zbl 0259.58006

48. S. Smale, Stable manifolds for differential equations and diffeomorphisms, Ann. Sc. Norm. Super. Pisa, 17 (1963), 97-116 | Numdam | MR 165537 | Zbl 0113.29702

49. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817 | MR 228014 | Zbl 0202.55202

50. F. Takens, On Zeeman's tolerance stability conjecture, Lect. Notes Math., vol. 197, 209-219, Springer, Berlin, 1971. | Zbl 0217.48303

51. F. Takens, Tolerance stability, Lect. Notes Math., vol. 468, 293-304, Springer, Berlin, 1975. | MR 650298 | Zbl 0321.54022

52. L. Wen, A uniform C1 connecting lemma, Discrete Contin. Dyn. Syst., 8 (2002), 257-265 | MR 1877839 | Zbl 1136.37317 | Zbl pre01736530

53. L. Wen, Z. Xia, C1 connecting lemmas, Trans. Amer. Math. Soc., 352 (2000), 5213-5230 | MR 1694382 | Zbl 0947.37018

54. W. White, On the tolerance stability conjecture, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 663-665, Academic Press, New York, 1973. | MR 341534 | Zbl 0282.54024

55. G. Yau, J. Yorke, An open set of maps for which every point is absolutely non-shadowable, Proc. Amer. Math. Soc., 128 (2000), 909-918 | MR 1623005 | Zbl 0996.37025