Moduli spaces of local systems and higher Teichmüller theory
Fock, Vladimir ; Goncharov, Alexander
Publications Mathématiques de l'IHÉS, Tome 104 (2006), p. 1-211 / Harvested from Numdam

Let G be a split semisimple algebraic group over 𝐐 with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(𝐑), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely related to the moduli spaces of G-local systems on S. We show that they carry a lot of interesting structures. In particular we define a distinguished collection of coordinate systems, equivariant under the action of the mapping class group of S. We prove that their transition functions are subtraction free. Thus we have positive structures on these moduli spaces. Therefore we can take their points with values in any positive semifield. Their positive real points provide the two higher Teichmüller spaces related to G and S, while the points with values in the tropical semifields provide the lamination spaces. We define the motivic avatar of the Weil-Petersson form for one of these spaces. It is related to the motivic dilogarithm.

@article{PMIHES_2006__103__1_0,
     author = {Fock, Vladimir and Goncharov, Alexander},
     title = {Moduli spaces of local systems and higher Teichm\"uller theory},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     volume = {104},
     year = {2006},
     pages = {1-211},
     doi = {10.1007/s10240-006-0039-4},
     mrnumber = {2233852},
     zbl = {1099.14025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/PMIHES_2006__103__1_0}
}
Fock, Vladimir; Goncharov, Alexander. Moduli spaces of local systems and higher Teichmüller theory. Publications Mathématiques de l'IHÉS, Tome 104 (2006) pp. 1-211. doi : 10.1007/s10240-006-0039-4. http://gdmltest.u-ga.fr/item/PMIHES_2006__103__1_0/

1. I. Biswas, P. Ares-Gastesi and S. Govindarajan, Parabolic Higgs bundles and Teichmüller spaces for punctured surfaces, Trans. Amer. Math. Soc., 349 (1997), no. 4, 1551-1560, alg-geom/9510011. | MR 1407481 | Zbl 0964.32011

2. A. A. Beilinson and V. G. Drinfeld, Opers, math.AG/0501398.

3. A. Berenstein and D. Kazhdan, Geometric and unipotent crystals, Geom. Funct. Anal., Special volume, part II (2000), 188-236. | MR 1826254 | Zbl 1044.17006

4. A. Berenstein and A. Zelevinsky, Tensor product multiplicities, canonical bases and totally positive algebras, Invent. Math., 143 (2001), no. 1, 77-128, math.RT/9912012. | MR 1802793 | Zbl 1061.17006

5. A. Berenstein, S. Fomin and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122 (1996), no. 1, 49-149. | MR 1405449 | Zbl 0966.17011

6. A. Berenstein, S. Fomin and A. Zelevinsky, Cluster algebras. III: Upper bounds and double Bruhat cells, Duke Math. J., 126 (2005), no. 1, 1-52, math.RT/0305434. | MR 2110627 | Zbl pre02147024

7. L. Bers, Universal Teichmüller space, Analytic Methods in Mathematical Physics (Sympos., Indiana Univ., Bloomington, Ind., 1968), pp. 65-83, Gordon and Breach (1970). | MR 349988 | Zbl 0213.35701

8. L. Bers, On the boundaries of Teichmüller spaces and on Kleinian groups, Ann. Math., 91 (1970), 670-600. | MR 297992 | Zbl 0197.06001

9. F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), no. 1, 139-162. | MR 931208 | Zbl 0653.32022

10. N. Bourbaki, Lie groups and Lie algebras, Chapters 4-6, translated from the 1968 French original by A. Pressley, Elements of Mathematics (Berlin), Springer, Berlin (2002). | MR 1890629 | Zbl 0983.17001

11. M. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J., 72 (1993), 217-239. | MR 1242885 | Zbl 0849.12011

12. J.-J Brylinsky and P. Deligne, Central extensions of reductive groups by K2, Publ. Math., Inst. Hautes Étud. Sci., 94 (2001), 5-85. | Numdam | MR 1896177 | Zbl 1093.20027

13. N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser Boston, Inc., Boston, MA (1997). | MR 1433132 | Zbl 0879.22001

14. L. O. Chekhov and V. V. Fock, Quantum Teichmüller spaces, Teor. Mat. Fiz., 120 (1999), no. 3, 511-528, math.QA/9908165. | MR 1737362 | Zbl 0986.32007

15. K. Corlette, Flat G-bundles with canonical metrics, J. Differ. Geom., 28 (1988), 361-382. | MR 965220 | Zbl 0676.58007

16. P. Deligne, Équations différentielles à points singuliers réguliers, Springer Lect. Notes Math., vol. 163 (1970). | MR 417174 | Zbl 0244.14004

17. V. G. Drinfeld and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Curr. Probl. Math., 24 (1984), 81-180, in Russian. | MR 760998 | Zbl 0558.58027

18. S. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc., 55 (1987), 127-131. | MR 887285 | Zbl 0634.53046

19. H. Esnault, B. Kahn, M. Levine and E. Viehweg, The Arason invariant and mod 2 algebraic cycles, J. Amer. Math. Soc., 11 (1998), no. 1, 73-118. | MR 1460391 | Zbl 1025.11009

20. V. V. Fock, Dual Teichmüller spaces, dg-ga/9702018.

21. V. V. Fock and A. A. Rosly, Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix, Transl., Ser. 2, Amer. Math. Soc., 191 (1999), 67-86, math.QA/9802054. | MR 1730456 | Zbl 0945.53050

22. V. V. Fock and A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm, math.AG/0311245.

23. V. V. Fock and A. B. Goncharov, Moduli spaces of convex projective structures on surfaces, to appear in Adv. Math. (2006), math.AG/0405348. | MR 2304317 | Zbl 1111.32013

24. V. V. Fock and A. B. Goncharov, Dual Teichmüller and lamination spaces, to appear in the Handbook on Teichmüller theory, math.AG/0510312. | MR 2349682 | Zbl pre05194797

25. V. V. Fock and A. B. Goncharov, Cluster 𝒳-Varieties, Amalganations, and Poisson-Lie Groups, Progr. Math., Birkhäuser, volume dedicated to V. G. Drinfeld, math.RT/0508408. | MR 2263192 | Zbl pre05234055

26. V. V. Fock and A. B. Goncharov, to appear.

27. S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12 (1999), no. 2, 335-380, math.RA/9912128. | MR 1652878 | Zbl 0913.22011

28. S. Fomin and A. Zelevinsky, Cluster algebras, I, J. Amer. Math. Soc., 15 (2002), no. 2, 497-529, math.RT/0104151. | MR 1887642 | Zbl 1021.16017

29. S. Fomin and A. Zelevinsky, Cluster algebras, II: Finite type classification, Invent. Math., 154 (2003), no. 1, 63-121, math.RA/0208229. | MR 2004457 | Zbl 1054.17024

30. S. Fomin and A. Zelevinsky, The Laurent phenomenon. Adv. Appl. Math., 28 (2002), no. 2, 119-144, math.CO/0104241. | MR 1888840 | Zbl 1012.05012

31. A. M. Gabrielov, I. M. Gelfand and M. V. Losik, Combinatorial computation of characteristic classes, I, II. (Russian), Funkts. Anal. Prilozh., 9 (1975), no. 2, 12-28; no. 3, 5-26. | MR 410758 | Zbl 0312.57016

32. F. R. Gantmacher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, revised edition of the 1941 Russian original. | Zbl 1002.74002

33. F. R. Gantmacher, M. G. Krein, Sur les Matrices Oscillatores, C.R. Acad. Sci. Paris, 201 (1935), AMS Chelsea Publ., Providence, RI (2002).

34. M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J., 3 (2003), no. 3, 899-934, math.QA/0208033. | MR 2078567 | Zbl 1057.53064

35. M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil-Petersson forms, Duke Math. J., 127 (2005), no. 2, 291-311, math.QA/0309138. | MR 2130414 | Zbl 1079.53124

36. O. Guichard, Sur les répresentations de groupes de surface, preprint.

37. W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), no. 2, 200-225. | MR 762512 | Zbl 0574.32032

38. W. Goldman, Convex real projective structures on compact surfaces, J. Differ. Geom., 31 (1990), 126-159. | MR 1053346 | Zbl 0711.53033

39. A. B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math., 114 (1995), no. 2, 197-318. | MR 1348706 | Zbl 0863.19004

40. A. B. Goncharov, Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, part 2, pp. 43-96, Amer. Math. Soc., Providence, RI (1994). | MR 1265551 | Zbl 0842.11043

41. A. B. Goncharov, Explicit Construction of Characteristic Classes, I, M. Gelfand Seminar, Adv. Soviet Math., vol. 16, part 1, pp. 169-210, Amer. Math. Soc., Providence, RI (1993). | MR 1237830 | Zbl 0809.57016

42. A. B. Goncharov, Deninger's conjecture of L-functions of elliptic curves at s=3. Algebraic geometry, 4. J. Math. Sci., 81 (1996), no. 3, 2631-2656, alg-geom/9512016. | Zbl 0867.11048

43. A. B. Goncharov, Polylogarithms, regulators and Arakelov motivic complexes, J. Amer. Math. Soc., 18 (2005), no. 1, 1-6; math.AG/0207036. | MR 2114816 | Zbl 1104.11036

44. A. B. Goncharov and Yu. I. Manin, Multiple ζ-motives and moduli spaces ℳ0,n , Compos. Math., 140 (2004), no. 1, 1-14, math.AG/0204102. | Zbl 1047.11063

45. J. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., 84 (1986), no. 1, 157-176. | MR 830043 | Zbl 0592.57009

46. N. J. Hitchin, Lie groups and Teichmüller space, Topology, 31 (1992), no. 3, 449-473. | MR 1174252 | Zbl 0769.32008

47. N. J. Hitchin, The self-duality equation on a Riemann surface, Proc. Lond. Math. Soc., 55 (1987), 59-126. | MR 887284 | Zbl 0634.53045

48. R. M. Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys., 43 (1998), no. 2, 105-115. | MR 1607296 | Zbl 0897.57014

49. I. Kra, Deformation spaces, A Crash Course on Kleinian Groups (Lectures at a Special Session, Annual Winter Meeting, Amer. Math. Soc., San Francisco, Calif., 1974), Lect. Notes Math., vol. 400, pp. 48-70, Springer, Berlin (1974). | MR 402122 | Zbl 0293.32021

50. M. Kontsevich, Formal (non)commutative symplectic geometry, The Gelfand Mathematical Seminars 1990-1992, Birkhäuser Boston, Boston, MA (1993), 173-187. | MR 1247289 | Zbl 0821.58018

51. F. Labourie, Anosov flows, surface groups and curves in projective spaces, preprint, Dec. 8 (2003). | MR 2221137 | Zbl 1103.32007

52. G. Lusztig, Total positivity in reductive groups, Lie Theory and Geometry, Progr. Math., vol. 123, pp. 531-568, Birkhäuser Boston, Boston, MA (1994). | MR 1327548 | Zbl 0845.20034

53. G. Lusztig, Total positivity and canonical bases, Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., vol. 9, pp. 281-295, Cambridge Univ. Press, Cambridge (1997). | MR 1635687 | Zbl 0890.20034

54. C. Mcmullen, Iteration on Teichmüller space, Invent. Math., 99 (1990), no. 2, 425-454. | MR 1031909 | Zbl 0695.57012

55. J. Milnor, Introduction to algebraic K-theory, Annals of Mathematics Studies, no. 72. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo (1971). | MR 349811 | Zbl 0237.18005

56. I. Nikolaev and E. Zhuzhoma, Flows on 2-dimensional manifolds, Springer Lect. Notes Math., vol. 1705 (1999). | MR 1707298 | Zbl 1022.37027

57. R. C. Penner, The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys., 113 (1987), no. 2, 299-339. | MR 919235 | Zbl 0642.32012

58. R. C. Penner, Weil-Petersson volumes, J. Differ. Geom., 35 (1992), no. 3, 559-608. | MR 1163449 | Zbl 0768.32016

59. R. C. Penner, Universal constructions in Teichmüller theory, Adv. Math., 98 (1993), no. 2, 143-215. | MR 1213724 | Zbl 0772.30040

60. R. C. Penner, The universal Ptolemy group and its completions, Geometric Galois Actions, 2, 293-312, Lond. Math. Soc. Lect. Note Ser., 243, Cambridge Univ. Press (1997). | MR 1653016 | Zbl 0983.32019

61. R. C. Penner and J. L. Harer, Combinatorics of train tracks, Ann. Math. Studies, 125, Princeton University Press, Princeton, NJ (1992). | MR 1144770 | Zbl 0765.57001

62. I. J. Schoenberg, Convex domains and linear combinations of continuous functions, Bull. Amer. Math. Soc., 39 (1933), 273-280. | MR 1562598 | Zbl 0007.10801

63. I. J. Schoenberg, Über variationsvermindernde lineare Transformationen, Math. Z., 32 (1930), 321-322. | JFM 56.0106.06 | MR 1545169

64. C. Simpson, Constructing variations of Hodge structures using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867-918. | MR 944577 | Zbl 0669.58008

65. J.-P. Serre, Cohomologie Galoisienne (French), with a contribution by J.-L. Verdier, Lect. Notes Math., no. 5, 3rd edn., v+212pp., Springer, Berlin, New York (1965). | MR 201444 | Zbl 0136.02801

66. K. Strebel, Quadratic Differentials, Springer, Berlin, Heidelberg, New York (1984). | MR 743423 | Zbl 0547.30001

67. P. Sherman and A. Zelevinsky, Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J., 4 (2004), no. 4, 947-974, math.RT/0307082. | MR 2124174 | Zbl 1103.16018

68. A. A. Suslin, Homology of GLn , characteristic classes and Milnor K-theory, Algebraic Geometry and its Applications, Tr. Mat. Inst. Steklova, 165 (1984), 188-204. | MR 752941 | Zbl 0591.18006

69. W. Thurston, The geometry and topology of three-manifolds, Princeton University Notes, http://www.msri.org/publications/books/gt3m.

70. A. M. Whitney, A reduction theorem for totally positive matrices, J. Anal. Math., 2 (1952), 88-92. | MR 53173 | Zbl 0049.17104

71. S. Wolpert, Geometry of the Weil-Petersson completion of the Teichmüller space, Surv. Differ. Geom., Suppl. J. Differ. Geom., VIII (2002), 357-393. | MR 2039996 | Zbl 1049.32020