Let G be a split semisimple algebraic group over with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to , construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely related to the moduli spaces of G-local systems on S. We show that they carry a lot of interesting structures. In particular we define a distinguished collection of coordinate systems, equivariant under the action of the mapping class group of S. We prove that their transition functions are subtraction free. Thus we have positive structures on these moduli spaces. Therefore we can take their points with values in any positive semifield. Their positive real points provide the two higher Teichmüller spaces related to G and S, while the points with values in the tropical semifields provide the lamination spaces. We define the motivic avatar of the Weil-Petersson form for one of these spaces. It is related to the motivic dilogarithm.
@article{PMIHES_2006__103__1_0, author = {Fock, Vladimir and Goncharov, Alexander}, title = {Moduli spaces of local systems and higher Teichm\"uller theory}, journal = {Publications Math\'ematiques de l'IH\'ES}, volume = {104}, year = {2006}, pages = {1-211}, doi = {10.1007/s10240-006-0039-4}, mrnumber = {2233852}, zbl = {1099.14025}, language = {en}, url = {http://dml.mathdoc.fr/item/PMIHES_2006__103__1_0} }
Fock, Vladimir; Goncharov, Alexander. Moduli spaces of local systems and higher Teichmüller theory. Publications Mathématiques de l'IHÉS, Tome 104 (2006) pp. 1-211. doi : 10.1007/s10240-006-0039-4. http://gdmltest.u-ga.fr/item/PMIHES_2006__103__1_0/
1. Parabolic Higgs bundles and Teichmüller spaces for punctured surfaces, Trans. Amer. Math. Soc., 349 (1997), no. 4, 1551-1560, alg-geom/9510011. | MR 1407481 | Zbl 0964.32011
, and ,2. A. A. Beilinson and V. G. Drinfeld, Opers, math.AG/0501398.
3. Geometric and unipotent crystals, Geom. Funct. Anal., Special volume, part II (2000), 188-236. | MR 1826254 | Zbl 1044.17006
and ,4. Tensor product multiplicities, canonical bases and totally positive algebras, Invent. Math., 143 (2001), no. 1, 77-128, math.RT/9912012. | MR 1802793 | Zbl 1061.17006
and ,5. Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122 (1996), no. 1, 49-149. | MR 1405449 | Zbl 0966.17011
, and ,6. Cluster algebras. III: Upper bounds and double Bruhat cells, Duke Math. J., 126 (2005), no. 1, 1-52, math.RT/0305434. | MR 2110627 | Zbl pre02147024
, and ,7. Universal Teichmüller space, Analytic Methods in Mathematical Physics (Sympos., Indiana Univ., Bloomington, Ind., 1968), pp. 65-83, Gordon and Breach (1970). | MR 349988 | Zbl 0213.35701
,8. On the boundaries of Teichmüller spaces and on Kleinian groups, Ann. Math., 91 (1970), 670-600. | MR 297992 | Zbl 0197.06001
,9. The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), no. 1, 139-162. | MR 931208 | Zbl 0653.32022
,10. Lie groups and Lie algebras, Chapters 4-6, translated from the 1968 French original by A. Pressley, Elements of Mathematics (Berlin), Springer, Berlin (2002). | MR 1890629 | Zbl 0983.17001
,11. Abelianization of the second nonabelian Galois cohomology, Duke Math. J., 72 (1993), 217-239. | MR 1242885 | Zbl 0849.12011
,12. Central extensions of reductive groups by K2, Publ. Math., Inst. Hautes Étud. Sci., 94 (2001), 5-85. | Numdam | MR 1896177 | Zbl 1093.20027
and ,13. Representation Theory and Complex Geometry, Birkhäuser Boston, Inc., Boston, MA (1997). | MR 1433132 | Zbl 0879.22001
and ,14. Quantum Teichmüller spaces, Teor. Mat. Fiz., 120 (1999), no. 3, 511-528, math.QA/9908165. | MR 1737362 | Zbl 0986.32007
and ,15. Flat G-bundles with canonical metrics, J. Differ. Geom., 28 (1988), 361-382. | MR 965220 | Zbl 0676.58007
,16. Équations différentielles à points singuliers réguliers, Springer Lect. Notes Math., vol. 163 (1970). | MR 417174 | Zbl 0244.14004
,17. Lie algebras and equations of Korteweg-de Vries type, Curr. Probl. Math., 24 (1984), 81-180, in Russian. | MR 760998 | Zbl 0558.58027
and ,18. Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc., 55 (1987), 127-131. | MR 887285 | Zbl 0634.53046
,19. The Arason invariant and mod 2 algebraic cycles, J. Amer. Math. Soc., 11 (1998), no. 1, 73-118. | MR 1460391 | Zbl 1025.11009
, , and ,20. V. V. Fock, Dual Teichmüller spaces, dg-ga/9702018.
21. Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix, Transl., Ser. 2, Amer. Math. Soc., 191 (1999), 67-86, math.QA/9802054. | MR 1730456 | Zbl 0945.53050
and ,22. V. V. Fock and A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm, math.AG/0311245.
23. Moduli spaces of convex projective structures on surfaces, to appear in Adv. Math. (2006), math.AG/0405348. | MR 2304317 | Zbl 1111.32013
and ,24. Dual Teichmüller and lamination spaces, to appear in the Handbook on Teichmüller theory, math.AG/0510312. | MR 2349682 | Zbl pre05194797
and ,25. Cluster -Varieties, Amalganations, and Poisson-Lie Groups, Progr. Math., Birkhäuser, volume dedicated to V. G. Drinfeld, math.RT/0508408. | MR 2263192 | Zbl pre05234055
and ,26. V. V. Fock and A. B. Goncharov, to appear.
27. Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12 (1999), no. 2, 335-380, math.RA/9912128. | MR 1652878 | Zbl 0913.22011
and ,28. Cluster algebras, I, J. Amer. Math. Soc., 15 (2002), no. 2, 497-529, math.RT/0104151. | MR 1887642 | Zbl 1021.16017
and ,29. Cluster algebras, II: Finite type classification, Invent. Math., 154 (2003), no. 1, 63-121, math.RA/0208229. | MR 2004457 | Zbl 1054.17024
and ,30. The Laurent phenomenon. Adv. Appl. Math., 28 (2002), no. 2, 119-144, math.CO/0104241. | MR 1888840 | Zbl 1012.05012
and ,31. Combinatorial computation of characteristic classes, I, II. (Russian), Funkts. Anal. Prilozh., 9 (1975), no. 2, 12-28; no. 3, 5-26. | MR 410758 | Zbl 0312.57016
, and ,32. Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, revised edition of the 1941 Russian original. | Zbl 1002.74002
and ,33. Sur les Matrices Oscillatores, C.R. Acad. Sci. Paris, 201 (1935), AMS Chelsea Publ., Providence, RI (2002).
, ,34. Cluster algebras and Poisson geometry, Mosc. Math. J., 3 (2003), no. 3, 899-934, math.QA/0208033. | MR 2078567 | Zbl 1057.53064
, and ,35. Cluster algebras and Weil-Petersson forms, Duke Math. J., 127 (2005), no. 2, 291-311, math.QA/0309138. | MR 2130414 | Zbl 1079.53124
, and ,36. O. Guichard, Sur les répresentations de groupes de surface, preprint.
37. The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), no. 2, 200-225. | MR 762512 | Zbl 0574.32032
,38. Convex real projective structures on compact surfaces, J. Differ. Geom., 31 (1990), 126-159. | MR 1053346 | Zbl 0711.53033
,39. Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math., 114 (1995), no. 2, 197-318. | MR 1348706 | Zbl 0863.19004
,40. Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, part 2, pp. 43-96, Amer. Math. Soc., Providence, RI (1994). | MR 1265551 | Zbl 0842.11043
,41. Explicit Construction of Characteristic Classes, I, M. Gelfand Seminar, Adv. Soviet Math., vol. 16, part 1, pp. 169-210, Amer. Math. Soc., Providence, RI (1993). | MR 1237830 | Zbl 0809.57016
,42. Deninger's conjecture of L-functions of elliptic curves at s=3. Algebraic geometry, 4. J. Math. Sci., 81 (1996), no. 3, 2631-2656, alg-geom/9512016. | Zbl 0867.11048
,43. Polylogarithms, regulators and Arakelov motivic complexes, J. Amer. Math. Soc., 18 (2005), no. 1, 1-6; math.AG/0207036. | MR 2114816 | Zbl 1104.11036
,44. Multiple ζ-motives and moduli spaces ℳ0,n , Compos. Math., 140 (2004), no. 1, 1-14, math.AG/0204102. | Zbl 1047.11063
and ,45. The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., 84 (1986), no. 1, 157-176. | MR 830043 | Zbl 0592.57009
,46. Lie groups and Teichmüller space, Topology, 31 (1992), no. 3, 449-473. | MR 1174252 | Zbl 0769.32008
,47. The self-duality equation on a Riemann surface, Proc. Lond. Math. Soc., 55 (1987), 59-126. | MR 887284 | Zbl 0634.53045
,48. Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys., 43 (1998), no. 2, 105-115. | MR 1607296 | Zbl 0897.57014
,49. Deformation spaces, A Crash Course on Kleinian Groups (Lectures at a Special Session, Annual Winter Meeting, Amer. Math. Soc., San Francisco, Calif., 1974), Lect. Notes Math., vol. 400, pp. 48-70, Springer, Berlin (1974). | MR 402122 | Zbl 0293.32021
,50. Formal (non)commutative symplectic geometry, The Gelfand Mathematical Seminars 1990-1992, Birkhäuser Boston, Boston, MA (1993), 173-187. | MR 1247289 | Zbl 0821.58018
,51. Anosov flows, surface groups and curves in projective spaces, preprint, Dec. 8 (2003). | MR 2221137 | Zbl 1103.32007
,52. Total positivity in reductive groups, Lie Theory and Geometry, Progr. Math., vol. 123, pp. 531-568, Birkhäuser Boston, Boston, MA (1994). | MR 1327548 | Zbl 0845.20034
,53. Total positivity and canonical bases, Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., vol. 9, pp. 281-295, Cambridge Univ. Press, Cambridge (1997). | MR 1635687 | Zbl 0890.20034
,54. Iteration on Teichmüller space, Invent. Math., 99 (1990), no. 2, 425-454. | MR 1031909 | Zbl 0695.57012
,55. Introduction to algebraic K-theory, Annals of Mathematics Studies, no. 72. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo (1971). | MR 349811 | Zbl 0237.18005
,56. Flows on 2-dimensional manifolds, Springer Lect. Notes Math., vol. 1705 (1999). | MR 1707298 | Zbl 1022.37027
and ,57. The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys., 113 (1987), no. 2, 299-339. | MR 919235 | Zbl 0642.32012
,58. Weil-Petersson volumes, J. Differ. Geom., 35 (1992), no. 3, 559-608. | MR 1163449 | Zbl 0768.32016
,59. Universal constructions in Teichmüller theory, Adv. Math., 98 (1993), no. 2, 143-215. | MR 1213724 | Zbl 0772.30040
,60. The universal Ptolemy group and its completions, Geometric Galois Actions, 2, 293-312, Lond. Math. Soc. Lect. Note Ser., 243, Cambridge Univ. Press (1997). | MR 1653016 | Zbl 0983.32019
,61. Combinatorics of train tracks, Ann. Math. Studies, 125, Princeton University Press, Princeton, NJ (1992). | MR 1144770 | Zbl 0765.57001
and ,62. Convex domains and linear combinations of continuous functions, Bull. Amer. Math. Soc., 39 (1933), 273-280. | MR 1562598 | Zbl 0007.10801
,63. Über variationsvermindernde lineare Transformationen, Math. Z., 32 (1930), 321-322. | JFM 56.0106.06 | MR 1545169
,64. Constructing variations of Hodge structures using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867-918. | MR 944577 | Zbl 0669.58008
,65. Cohomologie Galoisienne (French), with a contribution by J.-L. Verdier, Lect. Notes Math., no. 5, 3rd edn., v+212pp., Springer, Berlin, New York (1965). | MR 201444 | Zbl 0136.02801
,66. Quadratic Differentials, Springer, Berlin, Heidelberg, New York (1984). | MR 743423 | Zbl 0547.30001
,67. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J., 4 (2004), no. 4, 947-974, math.RT/0307082. | MR 2124174 | Zbl 1103.16018
and ,68. Homology of GLn , characteristic classes and Milnor K-theory, Algebraic Geometry and its Applications, Tr. Mat. Inst. Steklova, 165 (1984), 188-204. | MR 752941 | Zbl 0591.18006
,69. W. Thurston, The geometry and topology of three-manifolds, Princeton University Notes, http://www.msri.org/publications/books/gt3m.
70. A reduction theorem for totally positive matrices, J. Anal. Math., 2 (1952), 88-92. | MR 53173 | Zbl 0049.17104
,71. Geometry of the Weil-Petersson completion of the Teichmüller space, Surv. Differ. Geom., Suppl. J. Differ. Geom., VIII (2002), 357-393. | MR 2039996 | Zbl 1049.32020
,