Let X be a germ of holomorphic vector field at the origin of and vanishing there. We assume that X is a good perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called “resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These are biholomorphic to the intersection of a polydisc with an analytic set of the form “resonant monomials = constants”. Such a biholomorphism conjugates the restriction of X to one of its invariant varieties to the restriction of a linear diagonal vector field to a toric variety. Moreover, we show that the set of “frequencies” defining the invariant sets is of positive measure.
@article{PMIHES_2005__102__99_0, author = {Stolovitch, Laurent}, title = {A KAM phenomenon for singular holomorphic vector fields}, journal = {Publications Math\'ematiques de l'IH\'ES}, volume = {102}, year = {2005}, pages = {99-165}, doi = {10.1007/s10240-005-0035-0}, mrnumber = {2217052}, zbl = {1114.37026}, language = {en}, url = {http://dml.mathdoc.fr/item/PMIHES_2005__102__99_0} }
Stolovitch, Laurent. A KAM phenomenon for singular holomorphic vector fields. Publications Mathématiques de l'IHÉS, Tome 102 (2005) pp. 99-165. doi : 10.1007/s10240-005-0035-0. http://gdmltest.u-ga.fr/item/PMIHES_2005__102__99_0/
1. The stability of the equlibrium position of a hamiltonian system of ordinary differential equations in the general elliptique case, Soviet Math. Dokl., 2 (1961), 247-249. | Zbl 0135.42601
,2. Proof of a theorem by A. N. Kolmogorov on the persistence of quasi-periodic motions under small perturbations of the hamiltonian, Russ. Math. Surv., 18 (1963), 9-36. | MR 163025 | Zbl 0129.16606
,3. Small denominators and the problem of stability of motion in the classical and celestian mechanics, Russ. Math. Surv., 18 (1963), 85-191. | MR 170705 | Zbl 0135.42701
,4. Méthodes mathématiques de la mécanique classique, Mir, 1976. | MR 474391 | Zbl 0385.70001
,5. Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, 1980. | MR 626685 | Zbl 0455.34001
,6. Dynamical systems III, vol. 28 of Encyclopaedia of Mathematical Sciences, Springer, 1988. | MR 923953 | Zbl 0623.00023
(ed.),7. A strengthened extremal property of Chebyshev polynomials, Moscow Univ. Math. Bull., 42 (1987), 24-26. | MR 884508 | Zbl 0645.33014
,8. Metric diophantine approximation on manifolds, vol. 137 of Cambridge Tracts in Mathematics, Cambridge University Press, 1999. | MR 1727177 | Zbl 0933.11040
and ,9. Quasi-periodic motions in famillies of dynamical systems, Lect. Notes Math. 1645, Springer, 1996. | MR 1484969 | Zbl 0870.58087
, , and ,10. Local theory of nonlinear analytic ordinary differential equations, Lect. Notes Math. 702, Springer, 1979. | MR 547669 | Zbl 0404.34005
,11. Tores invariants des systèmes dynamiques hamiltoniens (d'après Kolomogorov, Arnol'd, Moser, Rüssmann, Zehnder, Herman, Pöschel, ...), in Séminaire Bourbaki, Astérisque, 133-134 (1986), 113-157, Société Mathématiques de France, exposé 639. | Numdam | Zbl 0602.58021
,12. On the existence of invariant tori in a neighbourhood of the zero solution of a system of ordinary differential equations, Differential Equations, pp. 967-976, 1967. | Zbl 0233.34051
and ,13. The normal form of a Hamiltonian system, Usp. Mat. Nauk, 43 (1988), 23-56, 247. | MR 937018 | Zbl 0642.70009
,14. Bifurcations de points fixes elliptiques, Publ. Math., Inst. Hautes Étud. Sci., 61 (1985), 67-127. | Numdam | MR 783349 | Zbl 0566.58025
,15. Complex analytic sets, vol. 46 of Mathematics and its Applications, Kluwer, 1989. | MR 1111477 | Zbl 0683.32002
,16. Perturbations of stable invariant tori for Hamiltonian systems, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., 15 (1988), 115-147. | Numdam | MR 1001032 | Zbl 0685.58024
,17. Absolutely convergent series expansions for quasi periodic motions, Math. Phys. Electron. J., 2, Paper 4, 33pp. (electronic), 1996. | MR 1399458 | Zbl 0896.34035
,18. Sur les courbes invariantes par les difféomorphisme de l'anneau, vol. 1, Astérisque, 103-104 (1983), Société Mathématiques de France. | Zbl 0532.58011
,19. Sur les courbes invariantes par les difféomorphisme de l'anneau, vol. 2, Astérisque, 144 (1986), Société Mathématiques de France. | Zbl 0613.58021
,20. Flows on homogeneous spaces and Diophantine approximations on manifolds, Ann. Math., 148 (1998), 339-360. | MR 1652916 | Zbl 0922.11061
and ,21. 98 (1954), 527-530. English translation in “Selected Works”, Kluwer. | Zbl 0056.31502
, On the preservation of conditionally periodic motions under small variations of the hamilton function, Dokl. Akad. Nauk SSSR,22. The general theory of dynamical systems and classical mechanics, in Proceedings of International Congress of Mathematicians (Amsterdam, 1954), vol. 1, pp. 315-333, North-Holland, 1957, English translation in “Collected Works”, Kluwer.
,23. On invariant curves of aera-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II (1962), 1-20. | MR 147741 | Zbl 0107.29301
,24. Stable and random motions in dynamical systems, with special emphasis on celestian mechanics, vol. 77 of Ann. Math. Studies, Princeton University Press, 1973. | MR 442980 | Zbl 0271.70009
,25. Kleine Nenner I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II (1970), 67-105. | MR 273156 | Zbl 0201.11202
,26. Kleine Nenner II: Bemerkungen zur Newtonschen Methode, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II (1972), 1-10. | MR 309297 | Zbl 0255.30003
,27. Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dyn., 6 (2001), 119-204. | MR 1843664 | Zbl 0992.37050
,28. Lectures on Celestian Mechanics, Springer, 1971. | MR 502448 | Zbl 0817.70001
and ,29. Celestial Mechanics, Part I, W. A. Benjamin, 1969. | Zbl 0293.70013
,30. Celestial Mechanics, Part II, W. A. Benjamin, 1969. | Zbl 0194.56702
,31. Complète intégrabilité singulière, C. R. Acad. Sci., Paris, Sér. I, Math., 326 (1998), 733-736. | MR 1641778 | Zbl 0917.32029
,32. Singular complete integrability, Publ. Math., Inst. Hautes Étud. Sci., 91 (2000), 133-210. | Numdam | MR 1828744 | Zbl 0997.32024
,33. Un phénomène de type KAM, non symplectique, pour les champs de vecteurs holomorphes singuliers, C. R. Acad. Sci, Paris, Sér. I, Math., 332 (2001), 545-550. | MR 1834067 | Zbl 0997.32025
,34. Normalisation holomorphe d'algèbres de type Cartan de champs de vecteurs holomorphes singuliers, Ann. Math., 161 (2005), 589-612. | Zbl 1080.32019
,35. Birfurcations de points fixes elliptiques (d'après A. Chenciner), in Séminaire Bourbaki, Astérisque, 145-146 (1987), 313-334, Société Mathématiques de France, exposé 668. | Numdam | Zbl 0616.58035
,36. Travaux de Herman sur les tores invariants, in Séminaire Bourbaki, Astérisque, 206 (1992), 311-344, Société Mathématique de France, exposé 754. | Numdam | MR 1206072 | Zbl 0791.58044
,37. Generalized implicit function theorems with applications to some small divisor problems I, Commun. Pure Appl. Math., 28 (1975), 91-140. | MR 380867 | Zbl 0309.58006
,38. Generalized implicit function theorems with applications to some small divisor problems II, Commun. Pure Appl. Math., 29 (1976), 49-111. | MR 426055 | Zbl 0334.58009
,