Consider a complex projective space with its Fubini-Study metric. We study certain one parameter deformations of this metric on the complement of an arrangement (= finite union of hyperplanes) whose Levi-Civita connection is of Dunkl type. Interesting examples are obtained from the arrangements defined by finite complex reflection groups. We determine a parameter interval for which the metric is locally of Fubini-Study type, flat, or complex-hyperbolic. We find a finite subset of this interval for which we get a complete orbifold or at least a Zariski open subset thereof, and we analyze these cases in some detail (e.g., we determine their orbifold fundamental group). In this set-up, the principal results of Deligne-Mostow on the Lauricella hypergeometric differential equation and work of Barthel-Hirzebruch-Höfer on arrangements in a projective plane appear as special cases. Along the way we produce in a geometric manner all the pairs of complex reflection groups with isomorphic discriminants, thus providing a uniform approach to work of Orlik-Solomon.
@article{PMIHES_2005__101__69_0, author = {Couwenberg, Wim and Heckman, Gert and Looijenga, Eduard}, title = {Geometric structures on the complement of a projective arrangement}, journal = {Publications Math\'ematiques de l'IH\'ES}, volume = {102}, year = {2005}, pages = {69-161}, doi = {10.1007/s10240-005-0032-3}, mrnumber = {2217047}, zbl = {1083.14039}, language = {en}, url = {http://dml.mathdoc.fr/item/PMIHES_2005__101__69_0} }
Couwenberg, Wim; Heckman, Gert; Looijenga, Eduard. Geometric structures on the complement of a projective arrangement. Publications Mathématiques de l'IHÉS, Tome 102 (2005) pp. 69-161. doi : 10.1007/s10240-005-0032-3. http://gdmltest.u-ga.fr/item/PMIHES_2005__101__69_0/
1. Geradenkonfigurationen und algebraische Flächen, Aspects of Mathematics, Vieweg, Braunschweig-Wiesbaden 1987. | MR 912097 | Zbl 0645.14016
, , ,2. Zariski theorems and diagrams for braid groups, Invent. Math., 145 (2001), 487-507, also available at arXiv math.GR/0010323. | MR 1856398 | Zbl 1034.20033
,3. Groupes et algèbres de Lie, Ch. 4, 5 et 6 Actualités Scientifiques et industrielles, vol. 1337, Hermann, Paris 1968. | MR 240238 | Zbl 0483.22001
,4. Die Fundamentalgruppe des Raumes der regulären Orbits einer komplexen Spiegelungsgruppe, Invent. Math., 12 (1971), 57-61. | MR 293615 | Zbl 0204.56502
,5. W. Casselman, Families of curves and automorphic forms, Thesis, Princeton University, 1966 (unpublished).
6. Finite complex reflection groups, Ann. Sci. Éc. Norm. Super., 9 (1976), 379-446. | Numdam | MR 422448 | Zbl 0359.20029
,7. P. B. Cohen, F. Hirzebruch, Review of Commensurabilities among lattices in PU(1,n) by Deligne and Mostow, Bull. Am. Math. Soc., 32 (1995), 88-105. | MR 1568148
8. Applications of the André-Oort Conjecture to some questions in transcendency, in: A Panorama in Number Theory, a view from Baker's garden, Cambridge University Press, London New York 2002, 89-106. | Zbl 1051.11039
, ,9. W. Couwenberg, Complex Reflection Groups and Hypergeometric Functions, Thesis (123 p.), University of Nijmegen, 1994, also available at http://members.chello.nl/ w.couwenberg/.
10. Regular complex polytopes, Cambridge University Press, London New York 1974. | MR 370328 | Zbl 0296.50009
,11. Hecke algebras and characters of parabolic type of finite groups with (B,N)-pairs, Publ. Math., Inst. Hautes Étud. Sci., 40 (1971), 81-116. | Numdam | MR 347996 | Zbl 0254.20004
, , ,12. Équations Différentielles à Points Singuliers Réguliers, Lect. Notes Math., vol. 163, Springer, Berlin etc. 1970. | MR 417174 | Zbl 0244.14004
,13. Les immeubles de groupes de tresses généralisées, Invent. Math., 17 (1972), 273-302. | MR 422673 | Zbl 0238.20034
,14. Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 5-89. | Numdam | MR 849651 | Zbl 0615.22008
, ,15. Commensurabilities among lattices in PU(1,n), Ann. of Math. Studies, vol. 132, Princeton University Press, Princeton 1993. | MR 1241644 | Zbl 0826.22011
, ,16. B. R. Doran, Intersection Homology, Hypergeometric Functions, and Moduli Spaces as Ball Quotients, Thesis, Princeton University (93 p.), 2003.
17. Coherent analytic sheaves, Grundlehren der Mathematischen Wissenschaften, vol. 265, Springer, Berlin, 1984. | MR 755331 | Zbl 0537.32001
, ,18. The Geometry of some special Arithmetic Quotients, Springer Lect. Notes Math., vol. 1637, 1996. | MR 1438547 | Zbl 0904.14025
,19. Janus-like algebraic varieties, J. Differ. Geom., 39 (1994), 507-557. | MR 1274130 | Zbl 0830.14022
, ,20. Chern Numbers of Algebraic Surfaces, Hirzebruch's Examples are Picard Modular Surfaces, Math. Nachr., 126 (1986), 255-273. | Zbl 0625.14018
,21. Transcendental Ball Points of Algebraic Picard Integrals, Math. Nachr., 161 (1993), 7-25. | MR 1251006 | Zbl 0823.14034
,22. Arrangements, KZ systems and Lie algebra homology, in: Singularity Theory, B. Bruce and D. Mond, eds., London Math. Soc. Lecture Note Series 263, Cambridge University Press, London New York 1999, 109-130. | MR 1709348 | Zbl 0953.17011
,23. Compactifications defined by arrangements I: the ball quotient case, Duke Math. J., 118 (2003), 151-187, also available at arXiv math.AG/0106228. | MR 1978885 | Zbl 1052.14036
,24. Sur les points singuliers des équations differentielles, Enseign. Math., 20 (1974), 147-176. | MR 368074 | Zbl 0299.34011
,25. J. Moduli fuchsiani, Ann. Sc. Norm. Super. Pisa, 19 (1965), 113-126. | Numdam | MR 180581 | Zbl 0166.04301
,26. Generalized Picard lattices arising from half-integral conditions, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 91-106. | Numdam | MR 849652 | Zbl 0615.22009
,27. Discriminants in the invariant theory of reflection groups, Nagoya Math. J., 109 (1988), 23-45. | MR 931949 | Zbl 0614.20032
, ,28. Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer, Berlin, 1992. | MR 1217488 | Zbl 0757.55001
, ,29. Über diejenigen Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elementes darstellt, J. Reine Angew. Math., 75 (1873), 292-335. | JFM 05.0146.03
,30. Finite unitary reflection groups, Can. J. Math., 6 (1954), 274-304. | MR 59914 | Zbl 0055.14305
, ,31. On purely transcendental fields of automorphic functions of several variables, Osaka J. Math., 1 (1964), 1-14. | MR 176113 | Zbl 0149.04302
,32. Invariants of finite reflection groups, Nagoya Math. J., 22 (1963), 57-64. | MR 154929 | Zbl 0117.27104
,33. Three-Dimensional Geometry and Topology, vol. I, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton 1997. | MR 1435975 | Zbl 0873.57001
,34. Shapes of polyhedra and triangulations of the sphere, Geom. Topol. Monogr., 1 (1998), 511-549. | MR 1668340 | Zbl 0931.57010
,35. Orbifold-uniformizing differential equations. III. Arrangements defined by 3-dimensional primitive unitary reflection groups, Math. Ann., 274 (1986), 319-334. | MR 838472 | Zbl 0579.58025
,