Geometric structures on the complement of a projective arrangement
Couwenberg, Wim ; Heckman, Gert ; Looijenga, Eduard
Publications Mathématiques de l'IHÉS, Tome 102 (2005), p. 69-161 / Harvested from Numdam

Consider a complex projective space with its Fubini-Study metric. We study certain one parameter deformations of this metric on the complement of an arrangement (= finite union of hyperplanes) whose Levi-Civita connection is of Dunkl type. Interesting examples are obtained from the arrangements defined by finite complex reflection groups. We determine a parameter interval for which the metric is locally of Fubini-Study type, flat, or complex-hyperbolic. We find a finite subset of this interval for which we get a complete orbifold or at least a Zariski open subset thereof, and we analyze these cases in some detail (e.g., we determine their orbifold fundamental group). In this set-up, the principal results of Deligne-Mostow on the Lauricella hypergeometric differential equation and work of Barthel-Hirzebruch-Höfer on arrangements in a projective plane appear as special cases. Along the way we produce in a geometric manner all the pairs of complex reflection groups with isomorphic discriminants, thus providing a uniform approach to work of Orlik-Solomon.

@article{PMIHES_2005__101__69_0,
     author = {Couwenberg, Wim and Heckman, Gert and Looijenga, Eduard},
     title = {Geometric structures on the complement of a projective arrangement},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     volume = {102},
     year = {2005},
     pages = {69-161},
     doi = {10.1007/s10240-005-0032-3},
     mrnumber = {2217047},
     zbl = {1083.14039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/PMIHES_2005__101__69_0}
}
Couwenberg, Wim; Heckman, Gert; Looijenga, Eduard. Geometric structures on the complement of a projective arrangement. Publications Mathématiques de l'IHÉS, Tome 102 (2005) pp. 69-161. doi : 10.1007/s10240-005-0032-3. http://gdmltest.u-ga.fr/item/PMIHES_2005__101__69_0/

1. G. Barthel, F. Hirzebruch, T. Höfer, Geradenkonfigurationen und algebraische Flächen, Aspects of Mathematics, Vieweg, Braunschweig-Wiesbaden 1987. | MR 912097 | Zbl 0645.14016

2. D. Bessis, Zariski theorems and diagrams for braid groups, Invent. Math., 145 (2001), 487-507, also available at arXiv math.GR/0010323. | MR 1856398 | Zbl 1034.20033

3. N. Bourbaki, Groupes et algèbres de Lie, Ch. 4, 5 et 6 Actualités Scientifiques et industrielles, vol. 1337, Hermann, Paris 1968. | MR 240238 | Zbl 0483.22001

4. E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer komplexen Spiegelungsgruppe, Invent. Math., 12 (1971), 57-61. | MR 293615 | Zbl 0204.56502

5. W. Casselman, Families of curves and automorphic forms, Thesis, Princeton University, 1966 (unpublished).

6. A. M. Cohen, Finite complex reflection groups, Ann. Sci. Éc. Norm. Super., 9 (1976), 379-446. | Numdam | MR 422448 | Zbl 0359.20029

7. P. B. Cohen, F. Hirzebruch, Review of Commensurabilities among lattices in PU(1,n) by Deligne and Mostow, Bull. Am. Math. Soc., 32 (1995), 88-105. | MR 1568148

8. P. B. Cohen, G. Wüstholz, Applications of the André-Oort Conjecture to some questions in transcendency, in: A Panorama in Number Theory, a view from Baker's garden, Cambridge University Press, London New York 2002, 89-106. | Zbl 1051.11039

9. W. Couwenberg, Complex Reflection Groups and Hypergeometric Functions, Thesis (123 p.), University of Nijmegen, 1994, also available at http://members.chello.nl/ w.couwenberg/.

10. H. S. M. Coxeter, Regular complex polytopes, Cambridge University Press, London New York 1974. | MR 370328 | Zbl 0296.50009

11. C. W. Curtis, N. Iwahori, R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with (B,N)-pairs, Publ. Math., Inst. Hautes Étud. Sci., 40 (1971), 81-116. | Numdam | MR 347996 | Zbl 0254.20004

12. P. Deligne, Équations Différentielles à Points Singuliers Réguliers, Lect. Notes Math., vol. 163, Springer, Berlin etc. 1970. | MR 417174 | Zbl 0244.14004

13. P. Deligne, Les immeubles de groupes de tresses généralisées, Invent. Math., 17 (1972), 273-302. | MR 422673 | Zbl 0238.20034

14. P. Deligne, G. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 5-89. | Numdam | MR 849651 | Zbl 0615.22008

15. P. Deligne, G. D. Mostow, Commensurabilities among lattices in PU(1,n), Ann. of Math. Studies, vol. 132, Princeton University Press, Princeton 1993. | MR 1241644 | Zbl 0826.22011

16. B. R. Doran, Intersection Homology, Hypergeometric Functions, and Moduli Spaces as Ball Quotients, Thesis, Princeton University (93 p.), 2003.

17. H. Grauert, R. Remmert, Coherent analytic sheaves, Grundlehren der Mathematischen Wissenschaften, vol. 265, Springer, Berlin, 1984. | MR 755331 | Zbl 0537.32001

18. B. Hunt, The Geometry of some special Arithmetic Quotients, Springer Lect. Notes Math., vol. 1637, 1996. | MR 1438547 | Zbl 0904.14025

19. B. Hunt, S. Weintraub, Janus-like algebraic varieties, J. Differ. Geom., 39 (1994), 507-557. | MR 1274130 | Zbl 0830.14022

20. R.-P. Holzapfel, Chern Numbers of Algebraic Surfaces, Hirzebruch's Examples are Picard Modular Surfaces, Math. Nachr., 126 (1986), 255-273. | Zbl 0625.14018

21. R.-P. Holzapfel, Transcendental Ball Points of Algebraic Picard Integrals, Math. Nachr., 161 (1993), 7-25. | MR 1251006 | Zbl 0823.14034

22. E. Looijenga, Arrangements, KZ systems and Lie algebra homology, in: Singularity Theory, B. Bruce and D. Mond, eds., London Math. Soc. Lecture Note Series 263, Cambridge University Press, London New York 1999, 109-130. | MR 1709348 | Zbl 0953.17011

23. E. Looijenga, Compactifications defined by arrangements I: the ball quotient case, Duke Math. J., 118 (2003), 151-187, also available at arXiv math.AG/0106228. | MR 1978885 | Zbl 1052.14036

24. B. Malgrange, Sur les points singuliers des équations differentielles, Enseign. Math., 20 (1974), 147-176. | MR 368074 | Zbl 0299.34011

25. J. I. Manin, Moduli fuchsiani, Ann. Sc. Norm. Super. Pisa, 19 (1965), 113-126. | Numdam | MR 180581 | Zbl 0166.04301

26. G. D. Mostow, Generalized Picard lattices arising from half-integral conditions, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 91-106. | Numdam | MR 849652 | Zbl 0615.22009

27. P. Orlik, L. Solomon, Discriminants in the invariant theory of reflection groups, Nagoya Math. J., 109 (1988), 23-45. | MR 931949 | Zbl 0614.20032

28. P. Orlik, H. Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer, Berlin, 1992. | MR 1217488 | Zbl 0757.55001

29. H. A. Schwarz, Über diejenigen Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elementes darstellt, J. Reine Angew. Math., 75 (1873), 292-335. | JFM 05.0146.03

30. G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Can. J. Math., 6 (1954), 274-304. | MR 59914 | Zbl 0055.14305

31. G. Shimura, On purely transcendental fields of automorphic functions of several variables, Osaka J. Math., 1 (1964), 1-14. | MR 176113 | Zbl 0149.04302

32. L. Solomon, Invariants of finite reflection groups, Nagoya Math. J., 22 (1963), 57-64. | MR 154929 | Zbl 0117.27104

33. W. P. Thurston, Three-Dimensional Geometry and Topology, vol. I, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton 1997. | MR 1435975 | Zbl 0873.57001

34. W. P. Thurston, Shapes of polyhedra and triangulations of the sphere, Geom. Topol. Monogr., 1 (1998), 511-549. | MR 1668340 | Zbl 0931.57010

35. M. Yoshida, Orbifold-uniformizing differential equations. III. Arrangements defined by 3-dimensional primitive unitary reflection groups, Math. Ann., 274 (1986), 319-334. | MR 838472 | Zbl 0579.58025