Let M be a closed orientable manifold of dimension and be the usual cochain algebra on M with coefficients in a field . The Hochschild cohomology of M, is a graded commutative and associative algebra. The augmentation map induces a morphism of algebras . In this paper we produce a chain model for the morphism I. We show that the kernel of I is a nilpotent ideal and that the image of I is contained in the center of , which is in general quite small. The algebra is expected to be isomorphic to the loop homology constructed by Chas and Sullivan. Thus our results would be translated in terms of string homology.
@article{PMIHES_2004__99__235_0, author = {Felix, Yves and Thomas, Jean-Claude and Vigu\'e-Poirrier, Micheline}, title = {The Hochschild cohomology of a closed manifold}, journal = {Publications Math\'ematiques de l'IH\'ES}, volume = {99}, year = {2004}, pages = {235-252}, doi = {10.1007/s10240-004-0021-y}, mrnumber = {2075886}, zbl = {1060.57019}, language = {en}, url = {http://dml.mathdoc.fr/item/PMIHES_2004__99__235_0} }
Felix, Yves; Thomas, Jean-Claude; Vigué-Poirrier, Micheline. The Hochschild cohomology of a closed manifold. Publications Mathématiques de l'IHÉS, Tome 99 (2004) pp. 235-252. doi : 10.1007/s10240-004-0021-y. http://gdmltest.u-ga.fr/item/PMIHES_2004__99__235_0/
1. On the cobar construction, Proc. Nat. Acad. Sci., 42 (1956), 409-412. | MR 79266 | Zbl 0071.16404
,2. Hopf algebras up to homotopy, J. Am. Math. Soc., 2 (1989), 417-453. | MR 991015 | Zbl 0681.55006
,3. M. Chas and D. Sullivan, String topology, Ann. Math. (to appear) GT/9911159.
4. A homotopy theoretic realization of string topology, Math. Ann., 324 (2002), 773-798. | MR 1942249 | Zbl 1025.55005
and ,5. The loop homology algebra of spheres and projective spaces, in: Categorical Decomposition Techniques in Algebraic Topology, Prog. Math. 215, Birkhäuser Verlag, Basel-Boston-Berlin (2004), 77-92. | MR 2039760 | Zbl 1054.55006
, and ,6. Multiplicative properties of Atiyah duality, in preparation (2003). | MR 2076004 | Zbl 1072.55004
,7. Real homotopy theory of Kähler manifolds, Invent. Math., 29 (1975), 245-274. | MR 382702 | Zbl 0312.55011
, , and ,8. Adams's cobar construction, Trans. Am. Math. Soc., 329 (1992), 531-549. | Zbl 0765.55005
, and ,9. Differential graded algebras in topology, in: Handbook of Algebraic Topology, Chapter 16, Elsevier, North-Holland-Amsterdam (1995), 829-865. | MR 1361901 | Zbl 0868.55016
, and ,10. Rational Homotopy Theory, Grad. Texts Math. 205, Springer-Verlag, New York (2000). | MR 1802847 | Zbl 0961.55002
, and ,11. The cohomology structure of an associative ring, Ann. Math., 78 (1963), 267-288. | MR 161898 | Zbl 0131.27302
,12. Cyclic homology and equivariant homology, Invent. Math., 87 (1987), 403-423. | MR 870737 | Zbl 0644.55005
,13. Homologie de Hochschild et homologie cyclique des algèbres différentielles graduées, in: Astérisque: International Conference on Homotopy Theory (Marseille-Luminy-1988), 191 (1990), 255-267. | MR 1098974 | Zbl 0728.19003
,