Indecomposable parabolic bundles
Crawley-Boevey, William
Publications Mathématiques de l'IHÉS, Tome 99 (2004), p. 171-207 / Harvested from Numdam

We study the possible dimension vectors of indecomposable parabolic bundles on the projective line, and use our answer to solve the problem of characterizing those collections of conjugacy classes of n*n matrices for which one can find matrices in their closures whose product is equal to the identity matrix. Both answers depend on the root system of a Kac-Moody Lie algebra. Our proofs use Ringel’s theory of tubular algebras, work of Mihai on the existence of logarithmic connections, the Riemann-Hilbert correspondence and an algebraic version, due to Dettweiler and Reiter, of Katz’s middle convolution operation.

@article{PMIHES_2004__100__171_0,
     author = {Crawley-Boevey, William},
     title = {Indecomposable parabolic bundles},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     volume = {99},
     year = {2004},
     pages = {171-207},
     doi = {10.1007/s10240-004-0025-7},
     mrnumber = {2102700},
     zbl = {1065.14040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/PMIHES_2004__100__171_0}
}
Crawley-Boevey, William. Indecomposable parabolic bundles. Publications Mathématiques de l'IHÉS, Tome 99 (2004) pp. 171-207. doi : 10.1007/s10240-004-0025-7. http://gdmltest.u-ga.fr/item/PMIHES_2004__100__171_0/

1. S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett., 5 (1998), 817-836. | MR 1671192 | Zbl 1004.14013

2. M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Am. Math. Soc., 85 (1957), 181-207. | MR 86359 | Zbl 0078.16002

3. P. Belkale, Local systems on P 1-S for S a finite set, Compos. Math., 129 (2001), 67-86. | MR 1856023 | Zbl 1042.14031

4. I. Biswas, A criterion for the existence of a flat connection on a parabolic vector bundle, Adv. Geom., 2 (2002), 231-241. | MR 1924757 | Zbl 1013.14010

5. S. Brenner and M. C. R. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, Representation Theory II (Ottawa, 1979), V. Dlab and P. Gabriel (eds.), Lect. Notes Math., 832, Springer, Berlin (1980), 103-169. | MR 607151 | Zbl 0446.16031

6. D. Chan and C. Ingalls, Non-commutative coordinate rings and stacks, Proc. London Math. Soc., 88 (2004), 63-88. | MR 2018958 | Zbl 1052.14002

7. W. Crawley-Boevey, Geometry of the moment map for representations of quivers, Compos. Math., 126 (2001), 257-293. | MR 1834739 | Zbl 1037.16007

8. W. Crawley-Boevey, Normality of Marsden-Weinstein reductions for representations of quivers, Math. Ann., 325 (2003), 55-79. | MR 1957264 | Zbl 1063.16016

9. W. Crawley-Boevey, On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J., 118 (2003), 339-352. | MR 1980997 | Zbl 1046.15013

10. W. Crawley-Boevey and J. Schröer, Irreducible components of varieties of modules, J. Reine Angew. Math., 553 (2002), 201-220. | MR 1944812 | Zbl 1062.16019

11. P. Deligne, Equations différentielles à points singuliers réguliers, Lect. Notes Math., 163, Springer, Berlin (1970). | MR 417174 | Zbl 0244.14004

12. M. Dettweiler and S. Reiter, An algorithm of Katz and its application to the inverse Galois problem, J. Symb. Comput., 30 (2000), 761-798. | MR 1800678 | Zbl 1049.12005

13. M. Furuta and B. Steer, Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math., 96 (1992), 38-102. | MR 1185787 | Zbl 0769.58009

14. W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, Singularities, representations of algebras, and vector bundles (Lambrecht, 1985), G.-M. Greuel and G. Trautmann (eds.), Lect. Notes Math., 1273, Springer, Berlin (1987), 265-297. | MR 915180 | Zbl 0651.14006

15. M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices, III, Ann. Math., 70 (1959), 167-205. | MR 113912 | Zbl 0168.28103

16. A. Haefliger, Local theory of meromorphic connections in dimension one (Fuchs theory), chapter III of A. Borel et al., Algebraic D-modules, Acad. Press, Boston (1987), 129-149.

17. D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Am. Math. Soc., 120, no. 575 (1996). | MR 1327209 | Zbl 0849.16011

18. V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math., 56 (1980), 57-92. | MR 557581 | Zbl 0427.17001

19. V. G. Kac, Root systems, representations of quivers and invariant theory, Invariant theory (Montecatini, 1982), F. Gherardelli (ed.), Lect. Notes Math., 996, Springer, Berlin (1983), 74-108. | MR 718127 | Zbl 0534.14004

20. N. M. Katz, Rigid local systems, Princeton University Press, Princeton, NJ (1996). | MR 1366651 | Zbl 0864.14013

21. V. P. Kostov, On the existence of monodromy groups of Fuchsian systems on Riemann's sphere with unipotent generators, J. Dynam. Control Systems, 2 (1996), 125-155. | Zbl 0948.34066

22. V. P. Kostov, On the Deligne-Simpson problem, C. R. Acad. Sci., Paris, Sér. I, Math., 329 (1999), 657-662. | MR 1724102 | Zbl 0937.20024

23. V. P. Kostov, On some aspects of the Deligne-Simpson problem, J. Dynam. Control Systems, 9 (2003), 393-436. | MR 1990242 | Zbl 1031.15020

24. V. P. Kostov, The Deligne-Simpson problem - a survey, preprint math.RA/0206298. | MR 2091962 | Zbl 1066.15016

25. H. Kraft and Ch. Riedtmann, Geometry of representations of quivers, Representations of algebras (Durham, 1985), P. Webb (ed.) Lond. Math. Soc. Lect. Note Ser., 116, Cambridge Univ. Press (1986), 109-145. | MR 897322 | Zbl 0632.16019

26. H. Lenzing, Representations of finite dimensional algebras and singularity theory, Trends in ring theory (Miskolc, Hungary, 1996), Canadian Math. Soc. Conf. Proc., 22 (1998), Am. Math. Soc., Providence, RI (1998), 71-97. | MR 1491919 | Zbl 0895.16003

27. B. Malgrange, Regular connections, after Deligne, chapter IV of A. Borel et al., Algebraic D-modules, Acad. Press, Boston (1987), 151-172.

28. V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structure, Math. Ann., 248 (1980), 205-239. | MR 575939 | Zbl 0454.14006

29. H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, Representations of algebras (Ottawa, 1992), Can. Math. Soc. Conf. Proc., 14 (1993), Am. Math. Soc., Providence, RI (1993), 313-337. | MR 1265294 | Zbl 0809.16012

30. A. Mihai, Sur le résidue et la monodromie d'une connexion méromorphe, C. R. Acad. Sci., Paris, Sér. A, 281 (1975), 435-438. | Zbl 0323.53024

31. A. Mihai, Sur les connexions méromorphes, Rev. Roum. Math. Pures Appl., 23 (1978), 215-232. | MR 491112 | Zbl 0379.53033

32. O. Neto and F. C. Silva, Singular regular differential equations and eigenvalues of products of matrices, Linear Multilinear Algebra, 46 (1999), 145-164. | MR 1712857 | Zbl 0935.15006

33. C. M. Ringel, Tame algebras and integral quadratic forms, Lect. Notes Math., 1099, Springer, Berlin (1984). | MR 774589 | Zbl 0546.16013

34. L. L. Scott, Matrices and cohomology, Ann. Math., 105 (1977), 473-492. | MR 447434 | Zbl 0399.20047

35. C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, 98 (1982), 1-209. | MR 699278 | Zbl 0517.14008

36. C. T. Simpson, Products of Matrices, Differential geometry, global analysis, and topology (Halifax, NS, 1990), Can. Math. Soc. Conf. Proc., 12 (1992), Am. Math. Soc., Providence, RI (1991), 157-185. | MR 1158474 | Zbl 0756.15022

37. K. Strambach and H. Völklein, On linearly rigid tuples, J. Reine Angew. Math., 510 (1999), 57-62. | MR 1696090 | Zbl 0931.12006

38. H. Völklein, The braid group and linear rigidity, Geom. Dedicata, 84 (2001), 135-150. | MR 1825350 | Zbl 0990.20021

39. A. Weil, Generalization de fonctions abeliennes, J. Math. Pures Appl., 17 (1938), 47-87. | JFM 64.0361.02