We give an example of a -smooth quasiregular mapping in 3-space with nonempty branch set. Moreover, we show that the branch set of an arbitrary quasiregular mapping in -space has Hausdorff dimension quantitatively bounded away from . By using the second result, we establish a new, qualitatively sharp relation between smoothness and branching.
@article{PMIHES_2004__100__153_0, author = {Bonk, Mario and Heinonen, Juha}, title = {Smooth quasiregular mappings with branching}, journal = {Publications Math\'ematiques de l'IH\'ES}, volume = {99}, year = {2004}, pages = {153-170}, doi = {10.1007/s10240-004-0024-8}, mrnumber = {2102699}, zbl = {1063.30021}, language = {en}, url = {http://dml.mathdoc.fr/item/PMIHES_2004__100__153_0} }
Bonk, Mario; Heinonen, Juha. Smooth quasiregular mappings with branching. Publications Mathématiques de l'IHÉS, Tome 99 (2004) pp. 153-170. doi : 10.1007/s10240-004-0024-8. http://gdmltest.u-ga.fr/item/PMIHES_2004__100__153_0/
1. Analytical foundations of the theory of quasiconformal mappings in R n , Ann. Acad. Sci. Fenn., Ser. A I, Math., 8 (1983), 257-324. | MR 731786 | Zbl 0548.30016
and ,2. Reifenberg flat metric spaces, snowballs, and embeddings, Math. Ann., 315 (1999), 641-710. | MR 1731465 | Zbl 0944.53004
and ,3. Quasiconformal 4-manifolds, Acta Math., 163 (1989), 181-252. | MR 1032074 | Zbl 0704.57008
and ,4. Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften 153, Springer, New York (1969). | MR 257325 | Zbl 0176.00801
,5. Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York (2001). | MR 1859913 | Zbl 1045.30011
and ,6. Smooth quasiregular maps with branching in R 4, Preprint (2004).
, , and ,7. Diffeomorphic approximation of quasiconformal and quasisymmetric homeomorphisms, Ann. Acad. Sci. Fenn., Ser. A I, Math., 8 (1983), 251-256. | MR 731785 | Zbl 0565.30015
,8. Measure properties of the branch set and its image of quasiregular mappings, Ann. Acad. Sci. Fenn., Ser. A I, 541 (1973), 16 pp. | MR 352453 | Zbl 0265.30027
and ,9. Normal families, multiplicity and the branch set of quasiregular maps, Ann. Acad. Sci. Fenn., Ser. A I, Math., 24 (1999), 231-252. | MR 1678028 | Zbl 0923.30015
, , and ,10. Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, Vol. 44, Cambridge University Press, Cambridge (1995). | MR 1333890 | Zbl 0819.28004
,11. Geometric topology in dimensions 2 and 3, Graduate Texts in Mathematics, Vol. 47, Springer, New York (1977). | MR 488059 | Zbl 0349.57001
,12. Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. Math. (2), 72 (1960), 521-554. | MR 121804 | Zbl 0108.18101
,13. Space mappings with bounded distortion, Sibirsk. Mat. Z., 8 (1967), 629-659. | MR 994644 | Zbl 0167.06601
,14. Space mappings with bounded distortion, Translations of Mathematical Monographs, Vol. 73, American Mathematical Society, Providence, RI (1989). | MR 994644 | Zbl 0667.30018
,15. Quasiregular Mappings, Springer, Berlin (1993). | MR 1238941 | Zbl 0816.30017
,16. Remarks on the local index of quasiregular mappings, J. Anal. Math., 46 (1986), 246-250. | MR 861703 | Zbl 0603.30025
and ,17. The Hausdorff dimension of the branch set of a quasiregular mapping, Ann. Acad. Sci. Fenn., Ser. A I, Math., 1 (1975), 297-307. | MR 396945 | Zbl 0326.30020
,18. Hyperbolic geometry and homeomorphisms, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), 543-555, Academic Press, New York, 1979. | MR 537749 | Zbl 0478.57007
,19. A survey of quasiregular maps in R n , Proceedings of the International Congress of Mathematicians (Helsinki, 1978), 685-691, Acad. Sci. Fennica, Helsinki, 1980. | MR 562672 | Zbl 0427.30019
,20. Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer, Berlin (1971). | MR 454009
,