Doubles mélanges des polylogarithmes multiples aux racines de l'unité
Racinet, Georges
Publications Mathématiques de l'IHÉS, Tome 95 (2002), p. 185-231 / Harvested from Numdam
@article{PMIHES_2002__95__185_0,
     author = {Racinet, Georges},
     title = {Doubles m\'elanges des polylogarithmes multiples aux racines de l'unit\'e},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     volume = {95},
     year = {2002},
     pages = {185-231},
     zbl = {1050.11066},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/PMIHES_2002__95__185_0}
}
Racinet, Georges. Doubles mélanges des polylogarithmes multiples aux racines de l'unité. Publications Mathématiques de l'IHÉS, Tome 95 (2002) pp. 185-231. http://gdmltest.u-ga.fr/item/PMIHES_2002__95__185_0/

[1] D. Bar-Natan, Non-associative tangles, Geometric topology (Athens, GA, 1993), Amer. Math. Soc., Providence, RI, 1997, pp. 139-183. | MR 1470726 | Zbl 0888.57008

[2] D. Bar-Natan, On associators and the Grothendieck-Teichmüller group. I, Selecta Math. (N.S.) 4, No. 2 (1998), 183-212, arXiv:q-alg/960621. | MR 1669949 | Zbl 0974.16028

[3] M. BIGOTTE, G. JACOB, N. OUSSOUS and M. PETITOT, Tables des relations de la fonction zêta colorée, prépublication du LIFL, Université Lille I, 1998.

[4] L. BOUTET DE MONVEL, Remarques sur les séries logarithmiques divergentes, Exposé au colloque « polylogarithmes et conjecture de Deligne-Ihara » au C.I.R.M. (Luminy), http://www.math.jussieu.fr/~boutet, avril 2000.

[5] D. J. BROADHURST, Conjectured enumeration of irreducible multiple zeta values, from knots and Feynman diagrams, Publication électronique, décembre 1996, arXiv:hep-th/9612012.

[6] P. CARTIER, Construction combinatoire des invariants de Vassiliev-Kontsevich des noeuds, R.C.P. 25, Vol. 45 (French) (Strasbourg, 1992-1993), Univ. Louis Pasteur, Strasbourg, 1993, pp. 1-10. | MR 1331627

[7] K.-T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. of Math. (2) 65 (1957), 163-178. | MR 85251 | Zbl 0077.25301

[8] K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83, no. 5 (1977), 831-879. | MR 454968 | Zbl 0389.58001

[9] P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over Q (Berkeley, CA, 1987), Springer, New York, 1989, pp. 79-297. | MR 1012168 | Zbl 0742.14022

[10] P. DELIGNE, Multizeta values, Notes d'exposés, IAS, Princeton, 2001.

[11] P. DELIGNE, Communication personelle, juin 2001.

[12] M. Demazure and P. Gabriel, Groupes algébriques. Tome I : Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Paris, 1970. | MR 302656 | Zbl 0203.23401

[13] V. G. Drinfeld, On quasitriangular quasi-Hopf algebras and a group closely related to Gal(Q ¯/Q), Leningrad Mathematical Journal 2 (1991), 829-860. | MR 1080203 | Zbl 0728.16021

[14] J. ÉCALLE, La libre génération des multizêtas et leur décomposition canonico-explicite en irréductibles, Notes de séminaire, automne 1999.

[15] M. ESPIE, J.-C. NOVELLI and G. RACINET, Experimental results about double shuffles of polyzetas, En préparation.

[16] P. Etingof and D. Kazhdan, Quantization of Lie bialgebras. I, Selecta Math. (N.S.) 2, No. 1 (1996), 1-41, arXiv:q-alg/9506005. | MR 1403351 | Zbl 0863.17008

[17] I. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. Retakh and J. Thibon, Non-commutative symmetric func- tions, Advances in Mathematics 112 (1995), 218-348. | MR 1327096 | Zbl 0831.05063

[18] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267-288. | MR 161898 | Zbl 0131.27302

[19] A. B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Mathematical Research Letters 5 (1998), 497-516. | MR 1653320 | Zbl 0961.11040

[20] A. B. Goncharov, The dihedral Lie algebras and Galois symmetries of π 1 (l) ( 1 -({0,}µ N )), Duke Math. J. 110, no. 3 (2001), 397-487, arXiv:math.AG/0009121. | Zbl 1113.14020

[21] A. B. GONCHAROV, Multiple polylogarithms and mixed Tate motives, Publication électronique, mars 2001, arXiv:math.AG/0103059.

[22] R. HAIN and M. MATSUMOTO, Weighted completion of Galois groups and some conjectures of Deligne, Publication électronique, juin 2000, arXiv:math.AG/0006158.

[23] M. HOANG NGOC and M. PETITOT, Lyndon words, polylogarithms and the Riemann zeta function, Discrete Mathematics 217 (1-3) (2000), 273-292. | MR 1766271 | Zbl 0959.68144

[24] M. Hoffman, The algebra of multiple harmonic series, Journal of Algebra 194, no. 2 (1997), 477-495. | MR 1467164 | Zbl 0881.11067

[25] K. IHARA and M. KANEKO, Derivation relations and regularized double shuffle relations of multiple zeta values, Prépublication, Univ. Kyushu, 2000.

[26] Y. Ihara, Automorphisms of pure sphere braid groups and Galois representations, The Grothendieck Festschrift, Vol. II, Birkhäuser Boston, Boston, MA, 1990, pp. 353-373. | MR 1106903 | Zbl 0728.20033

[27] Y. Ihara, Braids, Galois groups, and some arithmetic functions, 1990 Int. Cong. of Mathematicians, Math. Soc. of Japan, Tokyo, 1991, pp. 99-120. | MR 1159208 | Zbl 0757.20007

[28] Y. Ihara, On the stable derivation algebra associated with some braid groups, Israel J. Math. 80, no. 1-2 (1992), pp. 135-153, | MR 1248930 | Zbl 0782.20034

[29] Y. Ihara and M. Matsumoto, On Galois actions on profinite completions of braid groups, Recent developments in the inverse Galois problem (Seattle, WA, 1993), Amer. Math. Soc., Providence, RI, 1995, pp. 173-200. | MR 1352271 | Zbl 0848.11058

[30] M. Kontsevitch, Operads and motives in deformation quantization, Lett. Math. Phys. 48, no. 1 (1999), 35-72, Moshé Flato (1937-1998). | MR 1718044 | Zbl 0945.18008

[31] T. T. Q . Le and J. Murakami, Kontsevich's integral for the Kauffman polynomial, Nagoya Math. J. 142 (1996), 39-65. | Zbl 0866.57008

[32] C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, Journal of Algebra 177, no. 3 (1995), 967-982. | MR 1358493 | Zbl 0838.05100

[33] G. RACINET, Séries génératrices non-commutatives de polyzêtas et associateurs de Drinfel'd, Thèse de doctorat, Université de Picardie-Jules-Verne, 2000, http://www.dma.ens.fr/~racinet.

[34] G. Racinet, Torseurs associés à certaines relations algébriques entre polyzêtas aux racines de l'unité, Comptes-rendus de l'Académie des Sciences, Série I 333, no. 1 (2001), 5-10, arXiv:math.QA/0012024. | Zbl 1033.11033

[35] G. Racinet, Algèbres de Lie des valeurs formelles d'hyperlogarithmes aux racines de l'unité, Comptes-rendus de l'Académie des Sciences, Série I 333, no. 1 (2001), 11-16, arXiv:math.QA/0012024. | Zbl 1033.11032

[36] R. Ree, Lie elements and an algebra associated with shuffles, Ann. of Math. (2) 68 (1958), 210-220. | MR 100011 | Zbl 0083.25401

[37] C. Reutenauer, Free Lie algebras, London Mathematical Society Monographs, New series, no. 7, Oxford, 1993. | MR 2035110 | Zbl 0798.17001

[38] D. E. TAMARKIN, Formality of Chain Operad of Small Squares, Publication électronique, septembre 1998, arXiv:math.QA/9809164.

[39] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992), Birkhäuser, Basel, 1994, pp. 497-512. | MR 1341859 | Zbl 0822.11001