Deux caractérisations de la mesure d’équilibre d’un endomorphisme de P k ()
Briend, Jean-Yves ; Duval, Julien
Publications Mathématiques de l'IHÉS, Tome 94 (2001), p. 145-159 / Harvested from Numdam

Soit µ la mesure d’équilibre d’un endomorphisme de P k (C). Nous montrons ici qu’elle est son unique mesure d’entropie maximale. Nous construisons directement µ comme distribution asymptotique des préimages

Let µ be the equilibrium measure of an endomorphism of P k (C). We show that it is its unique measure of maximal entropy. We build µ directly as the distribution of premiages of any point outside an algebraic exceptional set.

@article{PMIHES_2001__93__145_0,
     author = {Briend, Jean-Yves and Duval, Julien},
     title = {Deux caract\'erisations de la mesure d'\'equilibre d'un endomorphisme de $P^k(\mathbb {C})$},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     volume = {94},
     year = {2001},
     pages = {145-159},
     zbl = {1010.37004},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/PMIHES_2001__93__145_0}
}
Briend, Jean-Yves; Duval, Julien. Deux caractérisations de la mesure d’équilibre d’un endomorphisme de $P^k(\mathbb {C})$. Publications Mathématiques de l'IHÉS, Tome 94 (2001) pp. 145-159. http://gdmltest.u-ga.fr/item/PMIHES_2001__93__145_0/

[1] E. Bedford, M. Ljubich, J. Smillie, Polynomial diffeomorphisms of C 2 , IV : The measure of maximal entropy and laminar currents, Invent. Math. 112 (1993), 77-125. | MR 1207478 | Zbl 0792.58034

[2] J.-Y. Briend, J. Duval, Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de CP k , Acta Math. 182 (1999), 143-157. | Zbl pre01541209

[3] M. Brin, A. Katok, On local entropy, in Geometric dynamics, Lect. Notes in Math. 1007, Springer Verlag (1983), 30-38. | MR 730261 | Zbl 0533.58020

[4] D. Cerveau, A. Lins Neto, Hypersurfaces exceptionnelles des endomorphismes de CP n , Bol. Soc. Brasil. Mat., 31 (2000), 155-161. | MR 1785266 | Zbl 0967.32022

[5] J. E. Fornæss, N. Sibony, Complex dynamics in higher dimension, in Complex potential theory, P. M. Gauthier and G. Sabidussi ed., Kluwer Acad. Press (1994), 131-186. | MR 1332961 | Zbl 0811.32019

[6] A. Freire, A. Lopes, R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45-62. | MR 736568 | Zbl 0568.58027

[7] M. Gromov, On the entropy of holomorphic maps, manuscrit, 1977.

[8] J. H. Hubbard, P. Papadopol, Superattractive fixed points in C n , Indiana Univ. Math. J. 43 (1994), 321-365. | MR 1275463 | Zbl 0858.32023

[9] M. Jonsson, Ergodic properties of fibered rational maps, Ark. Mat. 38 (2000), 281-317. | MR 1785403 | Zbl 1021.37019

[10] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encycl. of Math. and its Appl. 54 (1995), Cambridge Univ. Press. | MR 1326374 | Zbl 0878.58020

[11] P. Lelong, Propriétés métriques des variétés analytiques complexes définies par une équation, Ann. Sci. École Norm. Sup. 67 (1950), 393-419. | Numdam | MR 47789 | Zbl 0039.08804

[12] M. Ju. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynamical Systems 3 (1983), 351-385. | MR 741393 | Zbl 0537.58035

[13] R. Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 27-43. | MR 736567 | Zbl 0568.58028

[14] W. Parry, Entropy and generators in ergodic theory, Benjamin Press, 1969. | MR 262464 | Zbl 0175.34001

[15] N. Sibony, Dynamique des applications rationnelles de P k , in Dynamique et géométrie complexe (Lyon 1997), Panor. Synthèses 8, Soc. Math. France (1999), 97-185. | MR 1760844 | Zbl 1020.37026