@article{PMIHES_1999__89__179_0,
author = {Luzzatto, Stefano and Tucker, Warwick},
title = {Non-uniformly expanding dynamics in maps with singularities and criticalities},
journal = {Publications Math\'ematiques de l'IH\'ES},
volume = {90},
year = {1999},
pages = {179-226},
mrnumber = {2002b:37047},
zbl = {0978.37029},
language = {en},
url = {http://dml.mathdoc.fr/item/PMIHES_1999__89__179_0}
}
Luzzatto, Stephano; Tucker, Warwick. Non-uniformly expanding dynamics in maps with singularities and criticalities. Publications Mathématiques de l'IHÉS, Tome 90 (1999) pp. 179-226. http://gdmltest.u-ga.fr/item/PMIHES_1999__89__179_0/
[ABS77] , and , On the appearance and structure of the Lorenz attractor, Dokl. Acad. Sci. USSR 234 (1977), 336-339. | Zbl 0451.76052
[BC85] and , On iterations of 1 - ax2 on (- 1, 1), Ann. of Math. 122 (1985), 1-25. | MR 87c:58058 | Zbl 0597.58016
[BC91] and , The dynamics of the Hénon map, Ann. of Math. 133 (1991), 73-169. | MR 92d:58116 | Zbl 0724.58042
[Cos98] , Global strange attractors after collision of horseshoes with periodic sinks, PhD thesis, IMPA (1998).
[dMvS93] and , One-dimensional dynamics, Springer Verlag, Berlin, 1993. | MR 95a:58035 | Zbl 0791.58003
[GW79] and , Structural stability of Lorenz attractors, Publ. Math. IHES 50 (1979), 59-72. | Numdam | MR 82b:58055a | Zbl 0436.58018
[Hén76] , A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976), 69-77. | MR 54 #10917 | Zbl 0576.58018
[HL] and , Hyperbolicity and statistical properties of two-dimensional maps with criticalities and singularities, work in progress.
[HP76] and , Two strange attractors with a simple structure, Lect. Notes in Math. 565 (1976), 29-68. | MR 56 #6742 | Zbl 0379.76049
[Jak81] , Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys. 81 (1981), 39-88. | MR 83j:58070 | Zbl 0497.58017
[Lor63] , Deterministic nonperiodic flow, J. Atmosph. Sci. 20 (1963), 130-141.
[Luz00] , Bounded recurrence of critical points and Jakobson's theorem, London Mathematical Society Lecture Notes 274 (2000). | MR 2001i:37056 | Zbl 1062.37027
[LV] and , Lorenz-like attractors without continuous invariant foliations, in preparation.
[LV00] and , Positive Lyapunov exponents for Lorenz-like maps with criticalities, Asterisque, 261 (2000), 201-237. | MR 2001f:37036 | Zbl 0944.37025
[MV93] and , Abundance of strange attractors, Acta Math. 171 (1993), 1-71. | MR 94k:58089 | Zbl 0815.58016
[PRV] , , and , Persistence of global spiraling attractors, in preparation.
[PRV98] , , and , Infinite-modal maps with global chaotic behaviour, Ann. of Math. 148 (1998), 1-44. | MR 99k:58060 | Zbl 0916.58029
[Ree86] , Positive measure sets of ergodic rational maps, Ann. Sci. École Norm. Sup., 4e Série 19 (1986), 383-407. | Numdam | MR 88g:58100 | Zbl 0611.58038
[Rov93] , The dynamics of perturbations of the contracting Lorenz attractor, Bull. Braz. Math. Soc. 24 (1993), 233-259. | MR 95a:58097 | Zbl 0797.58051
[Ryc88] , Another proof of Jakobson's theorem and related results, Erg. Th. & Dyn. Syst. 8 (1988), 93-109. | MR 90b:58149 | Zbl 0671.58019
[Spa82] , The Lorenz equations : bifurcations, chaos and strange attractors, volume 41 of Applied Mathematical Sciences, Springer Verlag, Berlin, 1982. | MR 84b:58072 | Zbl 0504.58001
[Thu98] , Positive Lyapunov exponents for maps with flat critical points, Erg. Th. & Dyn. Syst. 19 (1998), 767-807. | MR 2000m:37051 | Zbl 0966.37011
[Tsu93a] , Positive Lyapunov exponents in families of one-dimensional dynamical systems, Inventiones Mathematicae 111 (1993), 113-137. | MR 93j:58081 | Zbl 0787.58029
[Tsu93b] , A proof of Benedicks-Carleson-Jakobson Theorem, Tokyo J. Math. 16 (1993), 295-310. | MR 94j:58104 | Zbl 0801.58027
[Tuc99] , The Lorenz attractor exists, C. R. Acad. Sci. Paris t. 328, Série I (1999), 1197-1202. | MR 2001b:37051 | Zbl 0935.34050
[Yoc] , Weakly Hyperbolic Dynamics, Birkhauser, in preparation.
[You98] , Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. 147 (1998) 585-650. | MR 99h:58140 | Zbl 0945.37009