@article{PMIHES_1997__85__193_0, author = {Hill, Richard and Velani, Sanju L.}, title = {Metric diophantine approximation in Julia sets of expanding rational maps}, journal = {Publications Math\'ematiques de l'IH\'ES}, volume = {86}, year = {1997}, pages = {193-216}, mrnumber = {99b:58143}, zbl = {0885.11051}, language = {en}, url = {http://dml.mathdoc.fr/item/PMIHES_1997__85__193_0} }
Hill, Richard; Velani, Sanju L. Metric diophantine approximation in Julia sets of expanding rational maps. Publications Mathématiques de l'IHÉS, Tome 86 (1997) pp. 193-216. http://gdmltest.u-ga.fr/item/PMIHES_1997__85__193_0/
[1] Iteration of Rational Functions, Springer GTM 132, 1991. | MR 92j:30026 | Zbl 0742.30002
,[2] Sets of fractional dimension (IV): On rational approximation to real numbers, J. London Math. Soc. 9 (1934), 126-131. | JFM 60.0204.01 | Zbl 0009.05301
,[3] Equilibrium States and the Ergodic Theory for Anosov Diffeomorphisms, III, Springer LNM 470, 1975. | MR 56 #1364 | Zbl 0308.28010
,[4] Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144. | MR 33 #2805 | Zbl 0127.03401
,[5] An Introduction to Diophantine Approximation, Cambridge Univ. Press, 1957. | MR 19,396h | Zbl 0077.04801
,[6] Ergodic Theory on Compact Spaces, IV, Springer LNM 527, 1976. | MR 56 #15879 | Zbl 0328.28008
, and ,[7] Ergodic theory of equilibrium states of rational maps, Nonlinearity 4 (1991), 103-134. | MR 92a:58112 | Zbl 0718.58035
and ,[8] Fractal Geometry - Mathematical Foundations and Applications, J. Wiley, Chichester, 1990. | Zbl 0689.28003
,[9] The Ergodic Theory of Shrinking Targets, Invent. Math. 119 (1995), 175-198. | MR 96e:58088 | Zbl 0834.28009
and ,[10] Markov maps and moving, shrinking targets, in preparation.
and ,[11] The Shrinking Target Problem for Matrix Transformations of Tori, J. Lond. Math. Soc. (to appear). | Zbl 0987.37008
and ,[12] The Jarník-Besicovitch theorem for geometrically finite Kleinian groups, Proc. Lond. Math. Soc. (to appear). | Zbl 0924.11063
and ,[13] Analytic function theory, Ginn and Company: Boston - New York - Chicago - Atlanta - Dallas - Palo Alto - Toronto, 1962. | MR 34 #1490 | Zbl 0102.29401
,[14] Diophantische Approximationen und Hausdorffsches Mass, Math. Sb. 36 (1929), 371-382. | JFM 55.0719.01
,[15] Entropy properties of rational endomorphisms of the Riemann sphere, Ergod. Th. Dynam. Sys. 3 (1983), 351-386. | MR 85k:58049 | Zbl 0537.58035
,[16] Geodesic excursions into cusps in infinite volume hyperbolic manifolds, Mathematica Gottingensis 45, 1993. | Zbl 0793.53052
and ,[17] Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, Soc. Math. France, 187-188, 1990. | MR 92f:58141 | Zbl 0726.58003
and ,[18] The limit set of a Fuchsian group, Acta Math. 136 (1976), 241-273. | MR 56 #8841 | Zbl 0336.30005
,[19] Thermodynamical Formalism, Encycl. Math. Appl. 5, 1978. | MR 80g:82017 | Zbl 0401.28016
,[20] Metric theory of Diophantine approximation (translated by R. A. SILVERMAN), V. H. Winston & Sons, Washington D.C., 1979. | MR 80k:10048
,[21] Conformal Dynamical Systems, in Proc. Conf. on Geometric Dynamics, Rio de Janeiro, 1981, Springer LNM 1007, 725-752. | MR 85m:58112 | Zbl 0524.58024
,[22] A variational principle for the pressure of continuous transformations, Am. J. Math. 97 (1975), 937-971. | MR 52 #11006 | Zbl 0318.28007
,