C k -conjugacy of holomorphic flows near a singularity
Chaperon, Marc
Publications Mathématiques de l'IHÉS, Tome 64 (1986), p. 143-183 / Harvested from Numdam
@article{PMIHES_1986__64__143_0,
     author = {Chaperon, Marc},
     title = {$C^k$-conjugacy of holomorphic flows near a singularity},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     volume = {64},
     year = {1986},
     pages = {143-183},
     mrnumber = {88m:58161},
     zbl = {0625.57011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/PMIHES_1986__64__143_0}
}
Chaperon, Marc. $C^k$-conjugacy of holomorphic flows near a singularity. Publications Mathématiques de l'IHÉS, Tome 64 (1986) pp. 143-183. http://gdmltest.u-ga.fr/item/PMIHES_1986__64__143_0/

[A] V. I. Arnol'D, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Moscou, Mir, 1980. | MR 83a:34003 | Zbl 0455.34001

[C] C. Camacho, On Rk X Zl-actions, in Differentiable Dynamical Systems, M. M. PEIXOTO ed., IMPA, Academic Press, 1973. | MR 51 #11585 | Zbl 0274.58006

[CKP] C. Camacho, N. Kuiper, J. Palis, The topology of holomorphic flows with singularity, Publ. Math. I.H.E.S., 48 (1978), 5-38. | Numdam | MR 80j:58045 | Zbl 0411.58018

[Ch 8o] M. Chaperon, Propriétés génériques des germes d'actions différentiables de groupes de Lie commutatifs élémentaires, thèse, Université Paris 7, 1980.

[Ch 85] M. Chaperon, Differential geometry and dynamics : two examples, in Singularities and Dynamical Systems, S. N. PNEVMATIKOS ed., Elsevier B. V. (North Holland), 1985, 187-207. | MR 86k:58100 | Zbl 0576.57029

[Ch 86] M. Chaperon, Géométrie différentielle et singularités de systèmes dynamiques, Astérisque, 138-139 (1986). | MR 88h:58039 | Zbl 0601.58002

[Ch 86a] M. Chaperon, Invariant manifolds and a preparation lemma for complex flows near a singularity, Preprint, École, Polytechnique, 1986.

[Ch 86b] M. Chaperon, Ck-versal unfoldings of holomorphic flows near their singularities, Preprint, École Polytechnique 1986.

[Ch 86c] M. Chaperon, C1-linearisable local holomorphic flows, to appear.

[Ch 86d] M. Chaperon, Smooth conjugacy results for germs of smooth Zk X Rm-actions preserving various structures, to appear.

[CZ] C. C. Conley, E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol'd, Invent. Math., 73 (1983), 33-49. | MR 85e:58044 | Zbl 0516.58017

[DR] F. Dumortier, R. Roussarie, Smooth linearisation of germs of R2-actions and holomorphic vector fields, Ann. Inst. Fourier, 30 (1) (1980), 31-64. | Numdam | MR 81k:58060 | Zbl 0418.58015

[G] J. Guckenheimer, Hartman's theorem for complex flows in the Poincaré domain, Composition Math., 24 (1) (1972). | Numdam | MR 46 #920 | Zbl 0239.58007

[I] Ju. S. Il'Iašenko, Global and local aspects of the theory of complex differential equations, Proceedings of the International Congress of Mathematicians, Helsinki, 1978, 821-826. | Zbl 0434.34003

[LM] S. López De Medrano, Topology of the intersection of quadrics in Rn, Preprint, Universidad Nacional Autónoma de Mexico, 1986. | Zbl 0681.57020

[MR] J. Martinet, J. P. Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. I.H.E.S., 55 (1982), 63-164. | Numdam | MR 84k:34011 | Zbl 0546.58038

[N] E. Nelson, Topics in dynamics, Part I, Flows, Princeton, 1970. | Zbl 0197.10702