@article{PMIHES_1984__59__143_0, author = {Pugh, Charles C.}, title = {The $C^{1}+\alpha $ hypothesis in Pesin theory}, journal = {Publications Math\'ematiques de l'IH\'ES}, volume = {60}, year = {1984}, pages = {143-161}, mrnumber = {85k:58047}, zbl = {0542.58027}, language = {en}, url = {http://dml.mathdoc.fr/item/PMIHES_1984__59__143_0} }
Pugh, Charles C. The $C^{1}+\alpha $ hypothesis in Pesin theory. Publications Mathématiques de l'IHÉS, Tome 60 (1984) pp. 143-161. http://gdmltest.u-ga.fr/item/PMIHES_1984__59__143_0/
[1] A proof of Pesin's Stable Manifold Theorem, preprint of Université de Paris-Sud, Orsay, France. | Zbl 0532.58012
, and ,[2] Generic Properties of Polynomial Vector Fields at Infinity, Trans. AMS, 143 (1969), 201-222. | MR 40 #6005 | Zbl 0187.34401
,[3] Invariant Manifolds, Springer Lecture Notes, 583, 1977. | MR 58 #18595 | Zbl 0355.58009
, and ,[4] Lyapunov Exponents, Entropy and Periodic Orbits for Diffeomorphisms, Publ. Math. IHES, 51 (1980), 137-173. | Numdam | MR 81i:28022 | Zbl 0445.58015
,[5] Introducão à Teoria Ergódica, IMPA, 1979.
,[6] Multiplicative Ergodic Theorem, Lyapunov Characteristic Exponents for Dynamical Systems, Trans. Moscow Math. Soc., 19 (1968), 197-231. | MR 39 #1629 | Zbl 0236.93034
,[7] Families of Invariant Manifolds Corresponding to Nonzero Characteristic Exponents, Math. USSR Izvestija, 10 (1976), 1261-1305. | Zbl 0383.58012
,[8] Characteristic Lyapunov Exponents and Smooth Ergodic Theory, Russian Math. Surveys, 32 (1977), 4, 55-114. | Zbl 0383.58011
,[9] Ergodic Theory of Differentiable Dynamical Systems, Publ. Math. IHES, 50 (1979), 27-58. | Numdam | MR 81f:58031 | Zbl 0426.58014
,[10] Local Cn Transformations of the Real Line, Duke Mathematical Journal, 24 (1957), 97-102. | MR 21 #1371 | Zbl 0077.06201
,