@article{PMIHES_1981__53__5_0, author = {Misiurewicz, Michal}, title = {Structure of mappings of an interval with zero entropy}, journal = {Publications Math\'ematiques de l'IH\'ES}, volume = {54}, year = {1981}, pages = {5-16}, mrnumber = {83j:58071}, zbl = {0477.58030}, language = {en}, url = {http://dml.mathdoc.fr/item/PMIHES_1981__53__5_0} }
Misiurewicz, Michal. Structure of mappings of an interval with zero entropy. Publications Mathématiques de l'IHÉS, Tome 54 (1981) pp. 5-16. http://gdmltest.u-ga.fr/item/PMIHES_1981__53__5_0/
[1] Universal properties of maps of an interval, preprint.
, , ,[2] Quantitative universality for a class of nonlinear transformation, preprint, Los Alamos. | Zbl 0509.58037
,[3] Periodic orbits and kneading invariants, preprint, Warwick, June 1977.
,[4] On finite limit sets for transformations on the unit interval, Journal of Combinatorial Theory (A), 15 (1973), 25-44. | MR 47 #5183 | Zbl 0259.26003
, , ,[5] The theory of kneading, preprint.
,[6] Horsehoes for mappings of the interval, Bull. Acad. Pol. Sci., Sér. sci. math., 27 (1979), 167-169. | MR 81b:58033 | Zbl 0459.54031
,[7] Invariant measures for continuous transformations of [0, 1] with zero topological entropy, Ergodic Theory, Proceedings, Oberwolfach, Germany, 1978, Lecture Notes in Math., 729, 144-152. | MR 81a:28017 | Zbl 0415.28015
,[8] Entropy of piecewise monotone mappings, Astérisque, 50 (1977), 299-310 (full version will appear in Studia Math., 67). | MR 58 #7577 | Zbl 0376.54019
, ,[9] Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267. | MR 58 #13206 | Zbl 0391.58014
,[10] Coexistence of cycles of a continuous map of a line into itself, Ukr. Mat. Žurnal, 16 (1964), 1, 61-71 (in Russian).
,[11] A theorem of arkovskiǏ on the existence of periodic orbits of continuous endomorphism of the real line, Commun. Math. Phys., 54 (1977), 237-248. | Zbl 0354.54027
,