@article{PMIHES_1978__48__127_0, author = {Ruelle, David}, title = {Integral representation of measures associated with a foliation}, journal = {Publications Math\'ematiques de l'IH\'ES}, volume = {48}, year = {1978}, pages = {127-132}, mrnumber = {80d:58040}, zbl = {0398.57013}, language = {en}, url = {http://dml.mathdoc.fr/item/PMIHES_1978__48__127_0} }
Ruelle, David. Integral representation of measures associated with a foliation. Publications Mathématiques de l'IHÉS, Tome 48 (1978) pp. 127-132. http://gdmltest.u-ga.fr/item/PMIHES_1978__48__127_0/
[1] Anosov foliations are hyperfinite. Preprint. | Zbl 0374.58008
,[2] Unique ergodicity for horocycle foliation. Preprint. | Zbl 0346.58009
and ,[3] A definition of Gibbs state for a compact set with Zv action, Commun. Math. Phys., 48 (1976), 85-88. | MR 54 #3755
,[4] Existence et unicité des représentations intégrales dans les convexes compacts quelconques, Ann. Inst. Fourier, 13 (1963), 139-154. | Numdam | MR 26 #6748 | Zbl 0122.34602
et ,[5]
. Unpublished.[6] Foliations with all leaves compact, Topology, 16 (1977), 13-32. | MR 55 #11268 | Zbl 0356.57022
, and ,[7] An ergodic theory for foliations. Preprint.
,[8] Foliations with measure preserving holonomy, Ann. Math., 102 (1975), 327-362. | MR 52 #11947 | Zbl 0314.57018
,[9] Thermodynamic formalism, Addison-Wesley, Reading, Mass., 1978. | MR 80g:82017 | Zbl 0401.28016
,[10] Currents, flows and diffeomorphisms, Topology, 14 (1975), 319-327. | MR 54 #3759 | Zbl 0321.58019
and ,[11] Asymptotic cycles, Ann. Math., 66 (1957), 270-284. | MR 19,568i | Zbl 0207.22603
,[12] Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91 (1969), 175-199. | MR 39 #2169 | Zbl 0201.56305
,[13] Gibbsian measures in ergodic theory, Uspehi Mat. Nauk, 27, n° 4 (1972), 21-64. English translation, Russian Math. Surveys, 27, n° 4 (1972), 21-69. | Zbl 0255.28016
,[14] Cycles for the dynamical study of foliated manifolds and complex manifolds, Inventiones math., 36 (1976), 225-255. | MR 55 #6440 | Zbl 0335.57015
,[15] On the homology of attractors, Topology, 15 (1976), 259-262. | MR 54 #1304 | Zbl 0332.58011
and ,