Stability of C mappings, III. Finitely determined map-germs
Mather, John N.
Publications Mathématiques de l'IHÉS, Tome 35 (1968), p. 127-156 / Harvested from Numdam
@article{PMIHES_1968__35__127_0,
     author = {Mather, John},
     title = {Stability of $C^\infty $ mappings, III. Finitely determined map-germs},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     volume = {35},
     year = {1968},
     pages = {127-156},
     mrnumber = {43 \#1215a},
     zbl = {0159.25001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/PMIHES_1968__35__127_0}
}
Mather, John N. Stability of $C^\infty $ mappings, III. Finitely determined map-germs. Publications Mathématiques de l'IHÉS, Tome 35 (1968) pp. 127-156. http://gdmltest.u-ga.fr/item/PMIHES_1968__35__127_0/

[1] S. Lang, Introduction to Differentiable Manifolds, New York, Interscience, 1962. | MR 27 #5192 | Zbl 0103.15101

[2] B. Malgrange, Ideals of Differentiable Functions, London, Oxford University Press, 1966. | Zbl 0177.17902

[3] J. Mather, Stability of C∞ mappings : I. The division theorem, Annals of Math., vol. 87, 1968, pp. 89-104 ; II. Infinitesimal stability implies stability (to appear in the Annals of Math.). | MR 38 #726 | Zbl 0159.24902

[4] J.-Cl. Tougeron, Une généralisation du théorème des fonctions implicites. Équivalence des idéaux de fonctions différentiables, C. R. Acad. Sc., Paris, t. 262, pp. 487-489 and pp. 563-565. | MR 36 #2170 | Zbl 0136.03905

[5] J.-Cl. Tougeron, Idéaux de fonctions différentiables, Thèse, Université de Rennes, 1967 (to appear in the Annales de l'Institut Fourier). | Numdam | Zbl 0162.18502