Dans cet article, nous analysons la conception de la logique intuitionniste comme une extension de la logique classique. Ce point de vue - surprenant au premier abord - a été explicitement soutenu par Jan Łukasiewicz sur la base d'une projection de la logique propositionnelle classique dans la logique propositionnelle intuitionniste, réalisée par Kurt Gödel en 1933. Au même moment, Gerhard Gentzen proposait une autre projection de l'arithmétique de Peano dans l'arithmétique de Heyting. Nous discutons ces projections en lien avec le problème de la détermination des symboles logiques qui expriment adéquatement les idiosyncrasies de la logique intuitionniste. De nombreux philosophes et logiciens ne semblent pas suffisamment conscients des difficultés soulevées par le fait de considérer la logique classique comme un sous-système de logique intuitionniste. Un résultat de cette discussion sera de faire ressortir ces difficultés. La notion de traduction logique jouera un rôle essentiel dans l'argumentation, et nous esquisserons quelques conséquences concernant la signification des constantes logiques.
In this paper we analyze the consideration of intuitionistic logic as an extension of classical logic. This - at first sight surprising - point of view has been sustained explicitly by Jan Łukasiewicz on the basis of a mapping of classical propositional logic into intuitionistic propositional logic by Kurt Gödel in 1933. Simultaneously with Gödel, Gerhard Gentzen had proposed another mapping of Peano´s arithmetic into Heyting´s arithmetic. We shall discuss these mappings in connection with the problem of determining what are the logical symbols that properly express the idiosyncracy of intuitionistic logic. Many philosophers and logicians do not seem to be sufficiently aware of the difficulties that arise when classical logic is considered as a subsystem of intuitionistic logic. As an outcome of the whole discussion these difficulties will be brought out. The notion of logical translation will play an essential role in the argumentation and some consequences related to the meaning of logical constants will be drawn.
@article{PHSC_2001__5_2_27_0, author = {Legris, Javier and Molina, Jorge A.}, title = {Intuitionistic logic considered as an extension of classical logic : some critical remarks}, journal = {Philosophia Scientiae}, volume = {5}, year = {2001}, pages = {27-50}, language = {en}, url = {http://dml.mathdoc.fr/item/PHSC_2001__5_2_27_0} }
Legris, Javier; Molina, Jorge A. Intuitionistic logic considered as an extension of classical logic : some critical remarks. Philosophia Scientiae, Tome 5 (2001) pp. 27-50. http://gdmltest.u-ga.fr/item/PHSC_2001__5_2_27_0/
[1] “Mathematik, Wissenschaft und Sprache”. In Monatsheft für Mathematik und Physik 36, 153-164. | JFM 55.0028.04
1929.-[2] “Consciousness, Philosophy, and Mathematics”. In Proceedings of the 10th International Congress of Philosophy, Amsterdam 1948. Amsterdam, North-Holland, 1949, 1243-1249. Reprinted in Philosophy of Mathematics. Selected Readings, edited by Paul Benacerraf & Hilary Putnam, 2nd. ed., Cambridge et al., Cambridge University Press. 1983, 90-96.
1949.-[3] “A Historical Introduction to Substructural Logics”. In Substructural Logics edited by Peter Schroeder-Heister and Kosta Došen, Oxford, Clarendon Press, 1-30. | MR 1283191 | Zbl 0941.03516
1993.-[4] “The Philosophical Basis of Intuitionistic Logic”. In Truth and Other Enigmas by Michael Dummett, Cambridge (Mass.), Harvard University Press, 1978, 215-247.
1973.-[5] Semantical Investigations in Heyting's Intuitionistic Logic. Dordrecht-Boston-London, Reidel. | MR 613144 | Zbl 0453.03001
1981.-[6] “On the Relation between Intuitionistic and Classical Arithmetic”. In [Szabo 1969], 53-67.
1933.-[7] “The Consistency of Elementary Number Theory”. In [Szabo 1969], 132-213.
1936.-[8] “Sur quelques points de la logique de M. Brouwer”. Acad. Roy. Belg.Bull. Cl.Sci., Ser. 5, 15, 183-188. | JFM 55.0030.05
1929.-[9] “Zur intuitionistischen Arithmetik und Zahlentheorie”. In Ergebnisse eines mathematischen Kolloquiums, 4, 34-38. | JFM 59.0865.03
1933a.-[10] “Eine Interpretation des intuitionistischen Aussagenkalküls”. In Ergebnisse eines mathematischen Kolloquiums, 4, 39-40. | Zbl 0007.19303
1933b.-[11] Deviant Logic. Cambridge, Cambridge, University Press.
1973.-[12] “Die formalen Regeln der intuitionistischen Logik”. Sitzungsber. preuss. Ak. Wiss. Phys.- Math. Klasse II, 42-56. | JFM 56.0823.01
1930.-[13] Intuitionism. An Introduction. Amsterdam, North-Holland. | MR 75147 | Zbl 0070.00801
1956.-[14] “Sur la non-contradiction de l'arithmetique”. J. reine und angew. Math. 166, 1-8. | Zbl 0003.04902
1932.-[15] Introduction to Metamathematics. New York-Toronto, Van Nostrand. | MR 51790
1952.-[16] “Semantical Analysis of Intuitionistic Logic”. In Formal Systems and Recursive Functions, ed. by J.N. Crossley and M.A.E. Dummett. Amsterdam, North-Holland, 92-130. | MR 201300 | Zbl 0137.00702
1965.-[17] Eine epistemische Interpretation der intuitionistischen Logik. Würzburg, Königshausen & Neumann. | Zbl 0744.03010
1990.-[18] “What is (Or at Least Appears to Be) Wrong with Intuitionistic Logic?”. In Advances in Scientific Philosophy. Essays in Honour of Paul Wengartner ed. by G. Schurz & G. Dorn. Amsterdam, Rodopi, 173-186.
1991.-[19] “On Variable Functors of Propositional Arguments” 1970], 311-324.
1951.-[20] “On The Intuitionistic Theory of Deduction”. In [Łukasiewicz 1970], 325-340
1952.-[21] Selected Works. ed. by L. Borkowski. Amsterdam-London, North-Holland. | MR 294080
1970.-[22] Prawitz, Dag & P.-E. Malmnäs 1968.- “A Survey of Some Connections Between Classical, Intuitionistic and Minimal Logic”. In Contributions to Mathematical Logic. Proceedings of the Logic Colloquium, Hannover 1966 ed. by H. Arnold Schmidt, Kurt Schütte & H.J. Thiele. Amsterdam, North-Holland, 215-229. | MR 235991 | Zbl 0188.01104
[23] Formal Logic. Oxford, at the Clarendon Press. | MR 131968 | Zbl 0124.00205
1962.-[24] Philosophy of Logic. Englewood Cliffs, N.J., Prentice-Hall.
1970.-[25] Vollständige Systeme modaler und intuitionistischer Logik. Berlin-Heidelberg-N.York, Springer. | MR 227002 | Zbl 0157.01602
1968.-[26] “Systems of Deduction”. In Handbook of Philosophical Logic, vol. I, ed. by Dov. Gabbay and Franz Guenther, Dordrecht, Reidel, 133-188. | Zbl 0875.03039
1983.-[27] The Collected Papers of Gerhard Gentzen. Amsterdam-London, North-Holland. | MR 262050 | Zbl 0209.30001
1969.-[28] Principles of Intuitionism. Heidelberg-N.York, Springer. | MR 244003
1969.-[29] Dirk 1973.- “Lectures on Intuitionism”. In Cambridge Summer School in Mathematical Logic ed. by A.R.D. Mathias and H. Rogers. Berlin-Heidelberg-New York, Springer, 1-94. | MR 337502 | Zbl 0272.02035
,[30] Theory of Logical Calculi. Basic Theory of Consequence Operations. Dordrecht-Boston-London, Kluwer. | MR 1009788 | Zbl 0682.03001
1988.-