@article{PDML_1985___3A_1_0, author = {Adda, Philippe}, title = {Contr\^olabilit\'e des syst\`emes bilin\'eaires dans le plan}, journal = {Publications du D\'epartement de math\'ematiques (Lyon)}, year = {1985}, pages = {1-56}, zbl = {0664.93004}, language = {fr}, url = {http://dml.mathdoc.fr/item/PDML_1985___3A_1_0} }
Adda, Philippe. Contrôlabilité des systèmes bilinéaires dans le plan. Publications du Département de mathématiques (Lyon), (1985), pp. 1-56. http://gdmltest.u-ga.fr/item/PDML_1985___3A_1_0/
[1] Méthodes mathématiques de la mécanique classique Ed. Mir. Moscou. | Zbl 0385.70001
,[2] Geometric methods for non linear optimal control problems. J. of Optim. theory and applications vol. 25 n° 4 (1978), p. 519-548. | MR 511616
,[3] The geometry of homogeneous polynomial dynamical systems. - Non linear analysis, theory, methods and applications vol. 4 (1980), p. 879-900. | MR 586853 | Zbl 0473.34022
[4] Controlabilité et observabilité d'une certaine classe de systèmes linéaires (à paraitre) - Note LAG, Grenoble 82-09.
,[5] Controle de l'attitude d'un satellite rigide. RAIRO série automatique vol. 16 n° 1 (1982) p. 85-93. | Zbl 0483.93022
[6] Controllability of mechanical control systems on Lie groups (to appear).
[7] A transitivity problem from control theory - J. Diff ; Eq. 17 (1975) p. 296-307. | MR 436210 | Zbl 0316.93006
,[8] Determination of the transitivity of bilinear systems - SIAM J. Control 17 (1979) p. 212- | MR 525022 | Zbl 0406.93037
and ,[9] Bilinear systems : on appealing class of nearly linear systems in theory and applications. IEEE Trans. Automat. Control. Vol. 19 (1974) p. 334-348. | MR 414174 | Zbl 0285.93015
, and ,[10] Cours de calcul opérationnel appliqué. Albin Michel (1967). | MR 352892 | Zbl 0038.26802
, ,[11] Séries de Volterra et séries formelles non commutatives. C.R. Acad. Sc. Paris (1975) p. 965-967. | MR 381784 | Zbl 0309.93028
,[12] A theorem of controllability for bilinear system - Note interne LAG Grenoble 81-04.
, ,[13] On the synthesis of a stabilizing feedback control via Lie algebraïc methods. SIAM J. Control, vol. 18 n° 4 (1980), p. 352-360. | MR 579546 | Zbl 0477.93046
,[14] Controllability in non linear systems. J. Diff ; Eq. 19 (1975) p. 46-61. | Zbl 0315.93002
,[15] Controllability of general nonlinear systems. Math. systems theory 12 (1979) p. 361-370. | MR 541864 | Zbl 0394.93010
,[16] Control systems on semi-simple Lie groups and their homogeneous spaces, Ann. Institut Fourier Tome 3, fasc. 4 (1981) p. 151-179. | Numdam | MR 644347 | Zbl 0453.93011
and[17] Control systems subordinated to a group action : Accessibility. J. Diff. Eq. vol. 39 n° 2 (1981) p. 186-211. | MR 607781 | Zbl 0531.93008
[18] Controllability property of affine systems (to appear) SIAM J. on Control. | Zbl 0549.93010
and ,[19] A generalization of Chow's theorem and the bang-bang theorem to non linear control problems. SIAM J. Control 12 (1974) p. 43-52. | MR 383206 | Zbl 0243.93008
,[20] Thèse. Université de Dijon (1978).
,[21] Bases mathématiques de la théorie des systèmes asservis non linéaires. (non publié).
[22] Completely controllable bilinear systems. SIAM J. Control vol. 6 n° 3 (1968). | MR 255270 | Zbl 0159.13001
and ,[23] Extension techniques. Encyclopaedia of control. Pergamon press. Madan Singh.
,[24] Encadrement des ensembles d'accessibilité en temps exact. Application à la théorie des systèmes (à paraître).
[25] Sur la structure de l'ensemble d'accessibilité de certains systèmes. Application à l'équivalence des systèmes, (à paraître). | Zbl 0574.49023
,[26] Sur la structure de l'équation de Duffing sans dissipation. SIAM J. Appl. Math. vol. 42 (1982) p. 868-894. | MR 665391 | Zbl 0515.34031
,[27] Linear control problems with total differential equations without convexity. American Math. Soc. (1974). | Zbl 0297.49005
,[28] Semi-groups representations, bilinear approximation of input-output maps and generalized inputs. Mathematical systems theory and Lecture notes in Economics and Math. systems n° 131 p. 172-191. G. Marchesin and S.K. Mitter Ed. | MR 683616 | Zbl 0353.93025
,[29] Some properties of vector fields systems that are not altered by small perturbations. J. Diff. Eq. Vol. 20 n° 2 (1976) p. 292-315. | MR 394756 | Zbl 0346.49036
[30] A sufficient condition for local controllability. SIAM J. control and Opt. vol. 16 n° 5 (3978) p. 790-802. | MR 527718 | Zbl 0391.93004
[31] Controllability of non linear systems. J. DIFF. Eq. 12 (1972) p. 95-116. | MR 338882 | Zbl 0242.49040
and ,[32] Linear multivariable control. A geometric approach. Lecture notes in Economics and Maths systems n° 101. M. Beckmann and H.P. Kiinzi Ed. | MR 770574 | Zbl 0314.93007
,