Deux espaces de Banach et leurs modèles étalés
Beauzamy, Bernard
Publications du Département de mathématiques (Lyon), Tome 17 (1980), p. 1-56 / Harvested from Numdam
Publié le : 1980-01-01
@article{PDML_1980__17_2_1_0,
     author = {Beauzamy, Bernard},
     title = {Deux espaces de Banach et leurs mod\`eles \'etal\'es},
     journal = {Publications du D\'epartement de math\'ematiques (Lyon)},
     volume = {17},
     year = {1980},
     pages = {1-56},
     zbl = {0526.46022},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/PDML_1980__17_2_1_0}
}
Beauzamy, Bernard. Deux espaces de Banach et leurs modèles étalés. Publications du Département de mathématiques (Lyon), Tome 17 (1980) pp. 1-56. http://gdmltest.u-ga.fr/item/PDML_1980__17_2_1_0/

[1] A. Andrew, Spreading Basic Sequences and subspaces of James' Quasi-reflexive space. A paraître à Math. Scand. | Zbl 0439.46010

[2] A. Baernstein, On reflexivity and summability. Studia Math. 42 (1972) - 91-94. | MR 305044 | Zbl 0206.42104

[3] B. Beauzamy, Banach-Saks properties and Spreading Models, Math. Scandinavica, 44 (1979) p. 357-384. | MR 555227 | Zbl 0427.46007

[4] B. Beauzamy et B. Maurey, Iteration of Spreading Models Arkiv für Math. vol. 17 (1979) n° 2. p. 193-198. | MR 608314 | Zbl 0477.46018

[5] A. Brunel et L. Sucheston, On B. Convex Banach Spaces, Math. System Theory 7 (1974). p. 294-299. | MR 438085 | Zbl 0323.46018

[6] A. Brunel et L. Sucheston, On J- convexity and ergodic super-properties of Banach spaces, Trans. American Math. Soc., 204 (1975). p. 79-90. | MR 380361 | Zbl 0273.46013

[7] R. C. James, Bases and Reflexivity of Banach Spaces, Ann. of Math. 52 (1950), p. 518-527. | MR 39915 | Zbl 0039.12202

[8] J. Lindenstrauss. L. Tzafriri, Classical Banach Spaces. (T. 1 : Sequences spaces). Springer Verlag. | MR 415253 | Zbl 0852.46015

[9] E. Odell. H. P. Rosenthal, A double dual characterization of separable Banach spaces containing 1 . Israël J. of Math. 20 (1975). p. 375-384. | MR 377482 | Zbl 0312.46031

[10] J. Schreier, Ein gegenbiespel Zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930). p. 58-62. | JFM 56.0932.02