@article{PDML_1978__15_4_37_0,
author = {Nemec, Petr},
title = {Remarque sur les sommes directes des modules de type d\'enombrable},
journal = {Publications du D\'epartement de math\'ematiques (Lyon)},
volume = {15},
year = {1978},
pages = {37-48},
mrnumber = {580390},
zbl = {0432.16012},
language = {fr},
url = {http://dml.mathdoc.fr/item/PDML_1978__15_4_37_0}
}
Nemec, Petr. Remarque sur les sommes directes des modules de type dénombrable. Publications du Département de mathématiques (Lyon), Tome 15 (1978) pp. 37-48. http://gdmltest.u-ga.fr/item/PDML_1978__15_4_37_0/
[1] , Primary decomposition of modules Math. Z. 107 (1968), 319-325. | MR 238898 | Zbl 0165.35302
[2] , Kulikov's criterion for modules, J. Reine Angew Math., 288 (1976), p. 154-159. | MR 422320 | Zbl 0333.16021
[3] , The structure of primary modules, Acad.Univ. Carolinae Math. Phys. 17,2 (1976), p. 3-12 | MR 435119 | Zbl 0395.16027
[4] , Algèbre commutative, Hermann, Paris.
[5] , Decomposition of modules I, classical rings, Math. Z. 90 (1965), p. 9-13. | MR 184974 | Zbl 0154.28404
[6] , Decomposition of modules II, Rings without chain conditions, Math. Z. 104 (1968), p. 349-357. | MR 229678 | Zbl 0164.34703
[7] , Infinite abelian groups I, Academic Press, New York and London 1970. | MR 255673 | Zbl 0257.20035
[8] Infinite abelian groups II, Academic Press, New York and London 1973. | MR 349869 | Zbl 0257.20035
[9] , Les modules primaires, Thèse, Praha 1977 (en tchèque).
[10] , Ulm's theorem for modules (à paraître).
[11] , Prüfer modules, (à paraître).
[12] , Homology and direct sums of countable abelian groups, Math.Z. 101 (1967), 182-212. | MR 218452 | Zbl 0173.02401
[13] , Decompositions of finitely generated modules, Proc. Amer. Math. Soc. 30 (1972), p. 445-450. | MR 281708 | Zbl 0203.05002
[14] , The structure of Loewy modules, J. Reine Angew. Math. 254 (1972) p. 204-220. | MR 318231 | Zbl 0235.16024
[15] , Classification theorems for p-groups and modules over a discrete valuation ring, Bull. Amer. Math. Soc. 78 (1972), 88-92. | MR 291284 | Zbl 0231.13004