@article{PDML_1973__10_1_85_0, author = {Michler, Gerhard O.}, title = {Quotient Rings of Right Noetherian Rings at Semi-Prime Ideals}, journal = {Publications du D\'epartement de math\'ematiques (Lyon)}, volume = {10}, year = {1973}, pages = {85-92}, mrnumber = {338042}, zbl = {0306.16005}, language = {en}, url = {http://dml.mathdoc.fr/item/PDML_1973__10_1_85_0} }
Michler, Gerhard O. Quotient Rings of Right Noetherian Rings at Semi-Prime Ideals. Publications du Département de mathématiques (Lyon), Tome 10 (1973) pp. 85-92. http://gdmltest.u-ga.fr/item/PDML_1973__10_1_85_0/
[1] Conditions which imply that subrings of Artinian rings are Artinian. J. reine angew. Math. 247 (1971), p. 123-138. | MR 280529 | Zbl 0211.36402
,[2] Semi-prime rings with maximum condition. Proc. London Math. Soc. 10. (1960), p. 201-220. | MR 111766 | Zbl 0091.03304
,[3] Rings and modules of quotients. J. Algebra 25 (1973), p. 519-521. | MR 245608 | Zbl 0201.04002
,[4] Krull dimension and global dimension of simple Ore extensions. Math. Z. 121 (1971), p. 341-345. | MR 297759 | Zbl 0212.05801
,[5] On the ring of quotients at a prime ideal of a right Noetherian ring, Canad. J. Math. 24 (1972), p. 703-712. | MR 299633 | Zbl 0219.16006
,[6] Completions of Dedekind prime rings and second endomorphism rings, Pacific J. Math. 36 (1971), p. 721-729. | MR 284470 | Zbl 0238.16006
,[7] Lectures on Rings and Modules, Waltham, Toronto, London, 1966. | MR 206032 | Zbl 0143.26403
,[8] Torsion theories, additive semantics and rings of quotients. Springer Verlag, Lectures Notes in Mathematics 177, Berlin, Heidelberg, New-York, 1971. | MR 284459 | Zbl 0213.31601
,[9] The torsion theory at a prime ideal of a right Noetherian ring. J. Algebra 25 (1973) p. 364-389. | MR 316487 | Zbl 0259.16018
and ,[10] Localization of right Noetherian rings at semi-prime ideals, Canad. J. Math. (to appear). | MR 360658 | Zbl 0253.16006
and ,[11] Torsionstheorien rechtsnoetherscher Ringe und ihre Quotientenringe. Thesis, Universität Tübingen, 1973. | Zbl 0275.16021
[12] Artinian quotient rings. Proc. London Math. Soc. (3) 17 (1967), p. 600-616. | MR 217108 | Zbl 0154.28803
,[13] Some pathological rings of quotients, (to appear). | MR 429973 | Zbl 0344.16002
and ,[14] Rings and modules of quotients, Springer Verlag, Lecture Notes in Mathematics 237, Berlin, Heidelberg, New-York, 1971. | MR 325663 | Zbl 0229.16003
,[15] Rings of quotients of perfect rings, Math. Zeitschrift, 122 (1971) p. 151-165. | MR 299636 | Zbl 0214.05302
,