Afin d’étudier les classes d'isotopie rigide des courbes rationnelles nodales de degré 5 dans RPP, nous associons à chaque quintique avec un point double réel marque une courbe trigonale dans la surface de Hirzebruch Sigma3 et le dessin reel nodal correspondant dans CP/(z mapsto bar{z}). Les dessins sont des versions réelles, proposées par S. Orevkov dans cite{Orevkov}, des dessins d'enfants de Grothendieck. Un dessin est un graphe contenu dans une surface topologique, muni d'une certaine structure supplémentaire. Dans cette thèse, nous étudions les propriétés combinatoires et les recompositions des dessins correspondants aux courbes trigonales nodales C subset Sigma dans les surfaces réglées réelles Sigma . Les dessins uninodaux sur une surface a bord quelconque et les dessins nodaux sur le disque peuvent être décomposés en blocs correspondant aux dessins cubiques sur le disque D2 , ce qui conduit a une classification des ces dessins. La classification des dessins considérés mène à une classification à isotopie rigide des courbes rationnelles nodales de degré 5 dans RPP.