L'objectif de ce travail est de décrire des modélisations des points de vue et des changements de points de vue d'images d'un objet planaire dans les algèbres de Clifford conformes. Nous généralisons le modèle conforme de l'espace euclidien à travers une famille à deux paramètres d'horosphère, chacune d'entre elles étant plongée dans un espace vectoriel réel de dimension 4 muni d'une métrique équivalente à la métrique de Minkowski. Nous décrivons par la suite deux approches pour mettre en œuvre ces modèles conformes généralisés pour les représentations d'images. L'idée de base est d'encoder les distorsions perspectives de l'objet causées par la variation du paramètre de latitude de la caméra au travers des paramètres d'une horosphère. La première approche consiste à considérer les horosphères de l'espace de Minkowski de dimension 4 pour encoder les points de vue. Les changements de points de vue sont alors linéarisés à travers un groupe de transformations linéaires et conformes de cet espace. Cette approche est ensuite généralisée en décrivant les points de vue à travers les objets d'un groupoïde dont les morphismes sont des diagrammes commutatifs qui représentent les changements de points de vue. Ainsi, une image conforme est décrite par une application définie sur une horosphère à deux paramètres. L'action du groupoïde sur l'ensemble des images conformes nous conduit à associer à tout objet planaire l'orbite de toutes ses images conformes obtenues à partir de tous les points de vue.