Cette thèse porte sur l'étude de certains aspects du principe d'incertitude en analyse harmonique.Historiquement le principe d'incertitude fut énoncé en 1927 par Heisenberg qui a montré unepropriété fondamentale de la mécanique quantique qui dit qu'il est impossible de mesurer, avecprécision, à la fois la position et la vitesse d'une particule. Le but de cette thèse est d'étendre certainsrésultats concernant les paires annihilantes à deux contextes.Dans la première partie nous étendons le principe d’incertitude local et les principes d'incertitudede Benedicks-Amrein-Berthier, de Shubin-Vakilian-Wolff et de Logvinenko-Sereda pour latransformée de Fourier-Bessel. Ces principes font qu’on ne peut pas localiser aussi précisémentqu’on le veut une fonction et sa transformée de Fourier-Bessel.Dans la deuxième partie, nous abordons les principes d'incertitude dans le cadre discret fini, dontl'intérêt a été renouvelé par la théorie de "l'échantillonnage comprimée" qui est plus connue sous levocable anglo-saxon du "compresseve sensing". Le thème général de ce travail est l'étude desprincipes d'incertitude qualitatifs et quantitatifs pour la transformée de Fourier discrète/ discrète à fenêtre.