Dans cette thèse, on étudié quelques propriétés des algèbres de Hopf et de leurs modules. Dans un premier temps on expose les travaux de Radford, de Nichols et Zoeller sur la liberté des algèbres de Hopf en tant que modules sur leurs sous-algèbres de Hopf, grâce à quoi on montre qu'une algèbre de Hopf graduée connexe est libre sur ses sous-algèbres de Hopf. On montre ensuite que si une algèbre de Hopf graduée connexe sur un corps commutatif de caractéristique nulle, ou tout élément homogène de degré strictement positif est nilpotent, alors elle est commutative et cocommutative, par suite elle est l'algèbre extérieure sur ses éléments primitifs, ce qui généralise un résultat de Hopf sans l'hypothèse de commutativite en dimension finie. En fin, on généralise des résultats de j. Bergen, en donnant des conditions impliquants que les espaces d'invariants associes a des sous-algèbres de Hopf différentes sont distincts