Ce travail traite du point de vue topologique la structure de l'ensemble des systèmes affines contrôlables. D'après les articles (J.S.), (A.S.V.) il est apparu des relations très fortes entre les structures topologiques de l'ensemble des systèmes affines contrôlables Ca et de Ch. En particulier les propriétés de FrCa et la connexité de Ca découlent directement de propriétés analogues pour Ch. On montre que Ca fait apparaitre deux types de points frontières où a priori il aurait pu y avoir trois types de points frontières. L'intérieur de sa fermeture contient les systèmes affines contrôlables pour lesquels les trajectoires sont des cycles, le restant des cas sont sur la frontière de son extérieur. On montre aussi que l'intérieur de Ca est constitué uniquement des (J.S.) et des systèmes affines contrôlables auxquels correspondent les systèmes homogènes non contrôlables caractérisés par les champs colinéaires (spirales liées). Notre résultat est que l'ensemble des systèmes affines contrôlables est connexe